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Introduction

Context: uncertainty analysis in maintenance modeling

Processing of uncertainty is crucial in industrial applications and consequently in decision-
making processes [Soares et al. 2010]. In practice, it is often convenient to distinguish uncer-
tainty due to the inherent variability of the phenomena of interest from that due to lack of
precise knowledge [Apostolakis 1990]. The former type is referred to as aleatory, irreducible,
stochastic or random uncertainty and describes the inherent variation associated with the
physical system or the environment, the latter is referred to as epistemic, subjective or re-
ducible uncertainty, and relates to the lack of precise knowledge of quantities or processes of
the system or the environment. Although probability theory is well suited to handle stochas-
tic uncertainty due to variability, it has been argued that the classical probabilistic approach
may have some limitations in the representation and treatment of epistemic uncertainty in
situations of poor knowledge, since it tends to force assumptions which may not be justified
by the available information [Baudrit et al. 2008]. For example, ignoring whether a value of
a parameter is more or less probable than any other value within a given range does not
justify assuming a uniform probability distribution, which is the least informative probability
distribution according to both the principle of insufficient reason1 and the maximum entropy
criterion [Dubois 2006].
In this work, we consider alternative approaches to classical probability theory for the repre-
sentation of epistemic uncertainty, such as Dempster-Shafer Theory of Evidence (DSTE) and
possibility theory. These approaches have been considered due to their ability to handle the
uncertainty associated with the imprecise knowledge on the values of parameters used by
expert information systems and for which reliable data are lacking.
The strength of DSTE and possibility theory lies in their ability to represent the epistemic
uncertainty in a less committed manner than that offered by probability theory. Possibility
theory has been embraced to tackle a number of interesting issues pertaining to different fields
such as graph theory [Borgelt et al. 2000], database querying [Bosc and Prade 1997], diagnostics
[Cayrac et al. 1996], data analysis [Wolkenhauer 1998] and classification [Benferhat and Tabia 2009],
agricultural sciences [Clarke et al. 1992], probabilistic risk assessment (e.g. [Baraldi and Zio
2008a,b]), to cite a few. Analogously, applications of DSTE can be found in diverse domains
such as signal and image processing [Bloch 1996], business decision-making [Srivastava and Mock
2002], pattern recognition [Parikh et al. 2001], clustering [Schubert 1997], etc.
In spite of the liveliness of the research in the field, it seems fair to say that the non-probabilistic
treatment of uncertainty within soft computing methods has not been properly investigated.
After all, given the relative immaturity and small size of research community dedicated to
the non-probabilistic approaches, it is hardly fair to expect that these are elaborated from soft
methods to the same extent as probability theory [Hall 2006]. In this respect, to the authors’
knowledge, possibility theory has never been applied in the context of maintenance modeling,
which is the subject of this document.
Maintenance is a key factor for safety, production, asset management and competitiveness.
Establishing an optimal maintenance policy requires the availability of logic, mathematical
and computational models for:

1. the evaluation of performance indicators characterizing a generic maintenance policy.
Possible performance indicators are production profit, system mean availability and
maintenance costs.

2. the identification of the optimal maintenance intervention policy multi-objective
optimization under

uncertainty

from the point
of view of the identified performance indicators, while fulfilling constraints such as
those regarding safety and regulatory requirements. In practice, this multi-objective

1 The principle of insufficient reason is a rule for assigning epistemic probabilities. Suppose that there are n > 1
mutually exclusive possibilities (which are collectively exhaustive). The principle of insufficient reason states
that if the n possibilities are indistinguishable except for their names, then each possibility should be assigned a
probability equal to 1/n. This principle was first enunciated by mathematicians Bernouilli and Laplace.
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optimization problem has to be faced in a situation in which some constraints and/or
the objective functions are affected by uncertainty. To effectively tackle this problem, a
number of approaches have been already proposed in the literature considering different
frameworks for uncertainty representation: probability distributions in [Deb et al. 2009;
Eskandari et al. 2007; Hughes 2001], fuzzy sets in [Li and Kwan 2003; Trebi-Ollennu and White
1997], and plausibility and belief functions in [Limbourg 2005].

Objectives of this document

This document contributes to step 1) identified above, by developing a methodology for
maintenance performance assessment that properly processes the involved uncertainties.
More specifically, we consider a situation in which:

� A stochastic model of the life of the component of interest, in terms of degradation process,
failure behavior and maintenance interventions is known without any uncertainty. This
is, for example, the case for the degradation process ‘fatigue’ which has been successfully
modeled bymeans of gamma processes [van Noortwijk 2009], Weibull distributions [Wormsen
and Härkegård 2004], Paris-Erdogan law [Paris and Erdogan 1963], etc.

� The model of the component’s behavior depends on a number of ill-known parameters.
With reference to the example of fatigue degradation, the gamma process, Weibull dis-
tribution and Paris-Erdogan law depend on parameters whose values are usually not
precisely known. Moreover, knowledge of other model parameters such as those describ-
ing the maintenance effectiveness (e.g., the improvement of the component degradation),
duration and cost may also be imprecise.

� Information about the ill-known parameters is available only from experts; in particular,
it is assumed that there is a single expert, who provides for every uncertain parameter a
set of intervals, which contain its true value with different degrees of possibility.

Although methods for evaluating a priori the performance of a maintenance policy while
taking into account the aleatory uncertainty on the future behavior of the component of
interest have been investigated in the literature (see [Wang 2002; Singpurwalla 1995; Valdez-Flores
and Feldman 1989; Wang and Pham 1999] for surveys), only few works (e.g., [Nicolai et al. 2009])
tackle the maintenance policy performance assessment problem considering the epistemic
uncertainty on the maintenance model parameters. In this work, the information elicited
from the expert is described by means of possibility distributions and propagated through the
model by resorting to a method that exploits the concept of FRVs2 [Baudrit et al. 2008; Shapiro
2009] and the DSTE.
The method is illustrated with reference to an exponential, non-repairable, binary component.
A practical case study is shown with reference to the degradation model of a check valve of a
turbo-pump lubricating system in a nuclear power plant.

Document structure

The document is organized as follows:

� Chapter 1 starts with a reminder of basic concepts of possibility theory and the Dempster-
Shafer theory of evidence.

� Chapter 2 illustrates the method used to elicit, represent and propagate the uncertainties.

� Chapter 3 illustrates a case study, which is for reference first investigated assuming that
there is no epistemic uncertainty affecting the parameters of the stochastic model. The
FRV-based method is then applied to this case study to treat epistemic uncertainty.

� Finally, a discussion of the pros and cons of the method, emerging from its application to
the case study, concludes the document.

2 FRV: Fuzzy random variable

2



Introduction

Readers may be interested by a number of other documents by the same authors in the
collection of the Industrial Safety Cahiers:

� Uncertainty characterization in risk analysis for decision-making practice (CSI-2012-07),
which provides an overview of sources of uncertainty which arise in each step of a
probabilistic risk analysis;

� Overview of risk-informed decision-making processes (CSI-2012-10), which illustrates
the way in which NASA and the US Nuclear Regulatory Commission implement
risk-informed decision-making.

� Literature review of methods for representing uncertainty (CSI-2013-03), which provides
an overview of probability theory, interval analysis and possibility theory and their
use for risk analysis.

� Case studies in uncertainty propagation and importance measure assessment
(CSI-2013-12) applies possibilistic methods to the estimation of importance measures
for components in the presence of epistemic uncertainty and to the propagation of
uncertainty in a flood risk model.
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1

Theory overview

This chapter provides a very brief introduction to the Dempster-Shafer theory of evidence
and to possibility theory, the uncertainty modelling methods used in this document. Another
Cahier titled Literature review of methods for representing uncertainty, published by the authors
in the same collection as this document (n° 2013-03), provides more detail on these two meth-
ods and compares them with classical probabilistic analysis, imprecise probability (interval
analysis) and probability bound analysis in a risk-analysis setting [Zio and Pedroni 2013].

1.1 Dempster-Shafer Theory of Evidence (DSTE)

Belief functions can be used to process information which is at the same time of random and
imprecise nature. The related formal DSTE (also called Theory of Belief Functions) involves
the specification of a triplet (S, I, m), where S (called ‘sample space’) is the set that contains
everything that could occur in the universe under consideration, I (referred to as ‘set of focal
elements’) is a countable collection of subsets of S, andm (Basic Probability Assignment, BPA)
is a function defined on subsets of S such that:

m(E) =
⎧{
⎨{⎩

> 0 if E ∈ I
0 if E ∉ I and E ⊂ S

and

∑
E∈I

m(E) = 1

More intuitively, the DSTE assigns weights (probability masses) to the focal sets; these weights
represent the amount of likelihood that can be associated to the focal sets but to no proper
subset of them (i.e. portions of these weights may move freely from one element of the focal
set to another) [Baudrit et al. 2006].
The function m is not the fundamental measure of likelihood of a proposition (set) A; rather,
there are two measures of likelihood, called Belief and Plausibility, that are obtained from m
as [Baudrit et al. 2006]: likelihood measures

Bel(A) = ∑
E⊆A

m(E) (1.1)

Pl(A) = ∑
E∩A≠0

m(E) (1.2)

More intuitively, the belief in a proposition (set) A is quantified as the sum of the probability
masses assigned to all sets enclosed by it; hence, it is a lower bound representing the amount
of belief that directly supports the proposition at least in part. The plausibility of event A is,
instead, the sum of the probability masses assigned to all sets whose intersection with the
proposition is not empty; hence, it is an upper bound on the possibility that the proposition
could be verified, i.e., it measures the fact that the proposition could possibly be true “up to
that value” because there is only so much evidence that contradicts it [Baraldi and Zio 2010].
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1.2 Possibility theory

In possibility theory, uncertainty is represented using a possibility function πY (y). For each
y in a set S, πY (y) expresses the degree of possibility of y. When πY (y) = 0 for some y, it
means that the outcome y is considered an impossible situation. When πY (y) = 1 for some y ,
it means that the outcome y is possible, i.e., is just unsurprising, normal, usual [Dubois 2006].
This is a much weaker statement than when probability is 1.

representing partial
knowledge

In the possibilistic framework, extreme forms of partial knowledge can be expressed, such as:

� Complete knowledge: for some state s0, π(s0) = 1 and π(s) = 0 for other states s (only s0
is possible)

� Complete ignorance: π(s) = 1∀s ∈ S (all states are totally possible)

The possibility function πY (y) gives rise to probability bounds, upper and lower probabilities,
referred to as necessity and possibility measures (NY , ΠY ). The possibility of a set A, ΠY (A),
is defined by

ΠY (A) = sup
y∈A

{πY (y)} (1.3)

and the necessity measure NY (A) is defined by

NY (A) = 1 − ΠY (A) = 1 − sup
y∉A

{πY (y)} (1.4)

where A represents the complement of A. Let 𝒫(πY ) be a family of probability distributions
such that for all sets A,NY (A) ≤ P(A) ≤ ΠY (A). Then,

NY (A) = inf P(A) (1.5)
ΠY (A) = sup P(A) (1.6)

where inf and sup are with respect to all probability measures in 𝒫 . Hence the necessity
measure is interpreted as a lower level for the probability and the possibility measure is
interpreted as an upper limit. Referring to subjective probabilities, the bounds reflect that
the analyst is not able or willing to precisely assign his/her probability, and the bounds are
the best he/she can do given the information available; in other words, he or she can only
describe a subset of 𝒫 which contains his/her probability [Dubois and Prade 1988].

A typical example of possibilistic representation is the following [Anoop and Rao 2008; Baraldi
and Zio 2008a]. We consider an epistemically-uncertain parameter y; based on its definition
we know that the parameter can take values in the range [4, 6] and the most likely value is 5:
to represent this information a triangular possibility distribution on the interval [4, 6] is used,
with maximum value at 5, see figure 1.1.

6



1.2. Possibility theory

Figure 1.1 – Possibility function for a parameter Y which is epistemically-uncertain on the interval [4,6],
with maximum value at 5, representing an expert’s qualitative assertion “the value is between
4 and 6, with the most likely value being 5”

7





2

Uncertainty setting

Let us consider a model Z = g(Y), where Z = (Z1,Z2,…,ZO) is the vector containing the O
output variables of interest, and g(·) is a function thatmodels howZ depends on the k uncertain
variables Yj , j = 1…k, of vector Y; the uncertainty on these variables is characterized by known
probability distributions FYj(yj ; θj), j = 1…k, where θj = {θj,1,…, θj,M} are the vectors containing
the hyper-parameters1 of the corresponding probability distributions. These parameters are
also uncertain and the information to characterize this uncertainty is drawn from an expert.
This framework of analysis, where the aleatory and epistemic components of the uncertainty
are separated into two hierarchical levels is often referred to as a ‘level 2’ approach or setting
[Limbourg and de Rocquigny 2010] (cf. figure 2.1).

Level-1

Level-2

Figure 2.1 – The “level-2” approach

As mentioned, information is elicited from an expert for estimating the parameters θj , j = 1…k.
The associated uncertainty is represented within the framework of possibility theory, and
propagated by means of the method based on the concept of FRVs2. For the sake of clarity
of illustration, the treatment of uncertainty is described by ways of a simple case study
concerning a non-repairable component whose state can only be either working or failed
and whose Time To Failure (TTF ) is exponentially distributed with uncertain failure rate λ.
The mission time is T (taken equal to 105 hours in the numerical case study). Hence, in this
reference example there are k = 1 uncertain variables, i.e. Y = (Y1) = (TTF), described by
the Cumulative Distribution Function (CDF) FTTF (ttf ; λ) = 1 − e−λttf , with M1 = 1 uncertain
parameter θ1 = {λ}. The output vector Z contains only one variable: the portion D of the

1 In Bayesian statistics, a hyperparameter is a parameter of a prior distribution. The term is used to distinguish them
from parameters of the model for the underlying system under analysis.

2 FRV: Fuzzy Random Variable. A fuzzy random variable associates a fuzzy set to each possible result of a random
experiment.
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0.74

“The probability that the 
component is unavailable 
for less than 70% of the 
mission duration is 0.74” 

Figure 2.2 – CDF ofD, the proportion of mission time when the component is in a down state, for λ = 10−5h−1

mission time in which the component is in a down state, i.e., unavailable. The function g that
links TTF to D is given by:

D = g(TTF ) =
⎧{
⎨{⎩

T−TTF
T

if TTF ≤ T

0 otherwise
(2.1)

Then, D is also a random variable, because it is a function of the random variable TTF. The
range of variability of D is the interval [0,1], and its distribution, for a given value of the
failure rate λ, is:

FD(d |λ) = P(D ≤ d |λ) = P (
T − TTF

T
≤ d |λ) = P (TTF ≥ T (1 − d)|λ) = e−λT (1−d) (2.2)

where d represents the generic value taken by the variable D.
Figure 2.2 shows the shape of this function for a value of the failure rate λ = 10−5h−1. Notice
that FD(0) (i.e. the probability that the component is always available during the mission time)
is equal to e−λT , i.e. the probability that the component fails after T .

2.1 Information elicited from experts

Within the possibility theory framework, for a generic uncertain parameter θ, an expert is
asked to provide a set of n nested intervals Ai , i = 1…n, (A1 ⊆ A2 ⊆ ⋯ ⊆ An), which are
believed tonested intervals

with increasing
confidence level

contain the true value of θ with a positive confidence level qi ; this latter can be
conveniently interpreted as the smallest (subjective) probability that the true value of the
parameter θ lies within Ai (i.e., P(𝓋 ∈ Ai) > qi). Alternatively, the interval Ai can be seen as
the smallest one whose probability of including the true value of θ is at least qi [Sandri et al.
1995], for any i = 1…n. From the expert’s point of view, qi is the portion of cases where θ ∈ Ai
from his/her experience [Sandri et al. 1995]. To sum up, the expert provides a weighted family
{(A1, q1), (A2, q2),…, (An, qn)} (see figure 2.3 for an example). Notice also that the value of the
largest confidence level qn may be smaller than 1, i.e. qn = 1 − ε, ε > 0; this is equivalent to
admitting that even the widest, safest interval contains some residual uncertainty (ε), i.e. it is
assumed that the expert is not absolutely sure about his judgment [Sandri et al. 1995].
Finally, the inequalities q1 ≤ q2 ≤ ⋯ ≤ qn hold, due to the fact that qi of the interval Ai is
necessarily smaller than qi+1 associated to Ai+1, if Ai ⊆ Ai+1, for any i = 1…n − 1.
With reference to the simple case study of the exponential, non-repairable, binary component,
let us suppose that the expert characterizes his/her knowledge about the value of the failure
rate λ with the information summarized in table 2.1.

10



2.1. Information elicited from experts

Figure 2.3 – Representation of the weighted families for the failure rate λ provided by the expert for
the exponential, non-repairable, binary component (left) and the corresponding possibility
distribution, built according to the procedure proposed in [Baudrit et al. 2006] (right). Note the
logarithmic scale on the horizontal axes.

Degree of certainty

q1 = 0.1 q2 = 0.3 q3 = 0.5 q4 = 0.7 q5 = 0.95

min max min max min max min max min max

λ [h-1 ] 9.9 · 10−6 1.01 · 10−5 9.7 · 10−6 1.03 · 10−5 9.5 · 10−6 1.05 · 10−5 9 · 10−6 1.1 · 10−5 8 · 10−6 1.2 · 10−5

Table 2.1 – Information elicited from the expert for the case study concerning the exponential, non-repairable,
binary component

11
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The Universe of Discourse (UoD), i.e., the interval of all possible values of the failure rate is [0,
∞[, where the lower bound (0) corresponds to an infallible component, whereas an infinite
failure rate corresponds to a component that fails at t = 0+. From table 2.1, it appears that
the expert provides the interval A1 that is believed to normally, unsurprisingly contain the
true failure rate value, with confidence level q1 = 0.1, which represents the portion of cases
where λ ∈ A1 from the expert’s experience. The interval A1 = [9.9 · 10−6h−1, 1.01 · 10−5h−1]
is ‘unsurprising’ in the sense that any interval A∗

1 of the same length as A1 would have been
associated to an equal or smaller frequency of occurrence of the event λ ∈ A∗

1. Obviously, the
expert cannot be less confident that the true value of the failure rate belongs to intervals that
include A1; thus, larger intervals are associated with larger confidence levels. In particular,
A5 = [8 · 10−6h−1, 1.2 · 10−5h−1] is the interval which leaves an ε = 0.05 probability of not
including the true value of λ.
Figure 2.3 (left) reports the set of intervals provided by the expert, and corresponding confi-
dence levels (degrees of certainty). For visualization, both figure 2.3 (left) and (right) report
only the interval [10−6h−1, 10−4h−1], instead of the entire UoD, and the abscissa axes are
logarithmically scaled.
More generally, in an uncertainty setting with k variables, an expert is asked to provide for
every j = 1…k and p = 1…Mj , a set of nj,p nested intervals Aj,p

i (Aj,p
1 ⊆ Aj,p

2 ⊆ ⋯ ⊆ Aj,p
nj,p) , i =

1…nj,p , which are believed to contain the true value of the p–th parameter of the j-th random
variable θj,p with a positive confidence level qj,pi .

2.2 Uncertainty representation

In this work, the uncertainty on the information elicited from the experts is represented using
possibility theory (see chapter 1).
In our case, a possibility distribution is directly built from the weighted families
{(A1, q1), (A2, q2),…, (An, qn)} provided by the expert, according to the procedure proposed
in [Sandri et al. 1995] and whose steps are here briefly recalled, for convenience.

� First of all, it is postulated that the necessity measure, N (Ai), i.e., the lower probability
that the true value of θ is in the interval Ai , is equal to the confidence level qi defined by
the expert. Thus, the inequality P(𝓋 ∈ Ai) ≥ N (Ai) = qi holds, for any i ∈ 1…n.

� Then, since there are infinite possibility distributions πθ(𝓋) that obey the constraint
qi = N (Ai), it has been decided to choose the one which maximizes the degree of
possibility πθ(𝓋) for all values 𝓋 . The solution is unique and is [Dubois 2006]:

πθ(𝓋) =
⎧{{
⎨{{⎩

1 if 𝓋 ∈ A1

min
i:θ∉Ai

(1 − qi) otherwise (2.3)

In particular, it is possible to show that this is the least specific possibility distribution with
respect to the available data, i.e., any other possibility distribution π1

θ obeying the constraints
qi = N (Ai) is such that π1

θ ≤ πθ [Dubois 2006].
With reference to the case of the exponential, non-repairable, binary component, the possibility
distribution πA of the failure rate λ associated to the weighted family of table 2.1 and built
according to the procedure depicted above, is reported in figure 2.3 (right). To verify that this
distribution obeys the constraints qi = N (Ai) for i ∈ 1…5, let us consider, for example, the
first interval A1; then, N (A1) = 1 − Π(not A1) = 1 − sup

𝓋∉A1

{πθ(𝓋)} = 1 − 0.9 = 0.1 = q1. Notice

also the residual uncertainty ε = 0.05 associated to the points of the UoD external to A5.
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2.3. Uncertainty propagation

2.3 Uncertainty propagation

Theuncertainty in the parameters of themodel needs to be propagated to assess the uncertainty
on the outputs. To this aim, we exploit the concept of FRVs within the methodology proposed
in [Baudrit et al. 2008]. FRVs can be intuitively conceptualized as random variables whose values
are not real numbers, but fuzzy numbers, since there is a vague perception of their true values,
which are crisp but unobservable [Shapiro 2009]. In other words, a FRV is a generalization of a
random variable or a fuzzy variable.
The operative steps of the uncertainty propagation procedure are reported in the following
with reference to the case of the exponential, non-repairable, binary component. Since this
case is characterized by a single uncertain variable (k = 1), we will always omit in the notations
the subscript 1 referring to the uncertain variable.

1. For each uncertain variable Yj , j = 1…k, sample a vector {uω
j },ω = 1…NT made of NT

uniform random numbers3 in [0,1[; for example in our case, since k = 1, we need a vector
of random numbers {uω},ω = 1…NT . In particular, let us assume that the first sampled
value u1 = 0.65.

2. Select a value of αi on [0,1] and take as intervals of possible values the cuts [θj ,θj]αi =

{[θ j,1, θ j,1]αi ,…, [θ j,Mj
, θ j,Mj

]αi} corresponding to the possibility distributions of the pa-
rameters θj = {θj,1,…, θj,Mj

}, of the variables Yj , j = 1…k; in our case, let us start from
αi = 1: the interval of possible values for the parameter λ is [9.9 · 10−6h−1, 1.01 · 10−5h−1]
(see figure 2.3 (right)).

3. Identify the set of random intervals [yω
j
, yωj ]αi of the variables Yj , j = 1…k, cor-

responding to the random vector {uω1 ,…, uωj ,…, uωk }, using the αi-cut [θj ,θj]αi =
{[θ j,1, θ j,1]αi ,…, [θ j,Mj

, θ j,Mj
]αi} found at step 2). In particular, the ω-th random inter-

val of the j-th variable, [yω
j
, yωj ]

αi

=
⎡⎢⎢
⎣

inf
θj∈[θ j ,θ j]αi

F−1Yj (uωj ;θj), sup
θj∈[θ j ,θ j]αi

F−1Yj (uωj ;θj)
⎤⎥⎥
⎦
, where

F−1Yj (uωj ;θj) is the quasi-inverse function of the CDF FYj(yj ;θj) of the random variable
Yj , for any value of the vector θj 4. This procedure can be regarded as an extension of
the Monte Carlo (MC) sampling method, modified to take into account the fact that the
parameters of the CDFs are fuzzy-uncertain in their UoDs: each sample from the uniform
distribution is associated to an interval of values, instead of a single value (figure 2.4),
so that different CDFs are obtained from the sampling, and lower and upper bounding
CDFs can be identified.
In the reference case study, the interval associated to the sample u1 = 0.65 and αi = 1
is [ttf ,ttf ]1 = [1.63 · 105h, 1.66 · 105h] (figure 2.4 (left)). This is obtained by considering
the two extremes of the interval of the uncertain parameter λ equal to [θ , θ]1 = [9.9 ·
10−6h−1, 1.01·10−5h−1], which define the upper and lower exponential distributions, 1−e−θt
and 1− e−θt , respectively. Then, these functions are inverted to find the interval [ttf ,ttf ]1,
which is given by:

[ttf ,ttf ]1 = ⎡⎢
⎣

−ln(1 − u1)

θ
,
−ln(1 − u1)

θ
⎤⎥
⎦

Notice that in this particular case, the interval [ttf ,ttf ]1 is trivially obtained, since the
inverse function of the exponential distribution is known. In general, it may be difficult
to find the analytical expression of the minimum and maximum values of the inverse
function F−1Fj (U ;θj), especially if it depends on a large number of parameters (e.g.,Mj > 4).
In these cases, one has to devise efficient methods for identifying the minimum and
maximum values of the random variable corresponding to the different combinations of
the uncertain parameters [θj ,θj]αi = {[θ j,1, θ j,1]αi ,…, [θ j,Mj

, θ j,Mj
]αi}.

3 NT is the sample size of the Monte Carlo procedure. A larger simulation time T will require a larger NT .
4 If U is a random variable uniformly distributed on [0,1[, then F−1Yj (uωj ;θj) has CDF FYj (u

ω
j ;θj).
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Figure 2.4 – Lower and upper CDFs corresponding to different values of αi , and the intervals associated by
the quasi-inverse functions to u1 = 0.65
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2.3. Uncertainty propagation

4. For every output variable Zo , o = 1…O, calculate the smallest and largest values of g
(denoted by gZO

αi
(ω) and gZOαi (ω), respectively), within the intervals [yω

j
, yωj ]αi , j = 1…k, of

the variables:

gZO
αi

(ω) = inf
j,yj∈[y i

j
,y ij]αi

g(y1,…, yj ,…, yk) (2.4)

gZOαi (ω) = sup
j,yj∈[y i

j
,y ij]αi

g(y1,…, yj ,…, yk) (2.5)

for o = 1,…,O, and consider the interval:

ΓzOαi (ω) = [gZO
αi

(ω), gZOαi (ω)] (2.6)

In the case of the exponential, non-repairable, binary component, the minimum and
maximum values of the TTF found in the previous step (i.e., 1.63 · 105 h and 1.66 · 105 h,
respectively) are both larger than the mission time T = 105h, and thus the corresponding
values of D are zero (equation (2.1)).

5. Return to step 2) and repeat steps 3) and 4) for another α-cut. For the exponential,
non-repairable, binary component, the intervals [ttf 1

1
,ttf

1
1]αi corresponding to different

values of αi are reported in figure 2.4. For example in the case of αi = 0.5, [ttf 1
1
,ttf

1
1]0.5 =

[9.54 · 104h, 1.16 · 105h], whereas for αi = 0.05 the interval [ttf 1
1
,ttf

1
1]0.05 = [0,∞[.

6. The FRV corresponding to the ω-th realization is computed as:

πZo(ω)(zo) = sup[αi ∈ [0, 1]|zo ∈ ΓZoαi (ω)] (2.7)

The FRV that describes the portion of the component downtime associated to the first
sample is shown in figure 2.5: since πD(1)(0) = 1 it is fully plausible that the component is
available for the overall mission time, whereas, since πD(1)(1) = 0.05 it is not impossible
that the component is unavailable for the entire mission time. Furthermore, according to
the probabilistic interpretation of the possibility distribution, it is possible to observe that
the probability that the component is fully available during its mission time is between
0.5 and 1, and the probability that the portion of downtimes is larger than 0.07 is between
0 and 0.2. Notice that the FRV of figure 2.5 is consistent with the intervals represented in
figure 2.4. In fact, only the intervals corresponding to αi ≤ 0.5 contain the value T = 105h:
this means that only for these values of αi the component may experience a failure before
T , which entails its unavailability for the remaining part of the mission time.

7. Repeat steps 1)-6) for a new realization of the random variables, until ω = NT .

Figure 2.5 – Fuzzy Random Variable corresponding to the sample u1 = 0.65
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8. Compute the Plausibility and Belief distributions for Zo , o = 1…O by:

Pl (Zo ∈] − ∞, zo]) =
NT

∑
ω=1

1
NT

· sup
zo∈]−∞,zo]

πZo(ω)(zo) (2.8)

Bel (Zo ∈] − ∞, zo]) =
NT

∑
ω=1

1
NT

· inf
zo∉]−∞,zo]

(1 − πZo(ω)(zo)) (2.9)

where 1/NT is the probability assigned to the ω-th FRV, for any ω. In particular, equa-
tion (2.9) is derived from the interpretation of the FRVs under the setting of random sets
[Baudrit et al. 2006].

The Plausibility and Belief distributions of D (i.e., the upper and lower bounds, respectively,
of the probability distributions of the portion of the mission time T in which the exponential,
non-repairable, binary component is in a fault state) are reported in figure 2.6; for comparison,
the CDF (see equation (2.9)) is also provided, which lies between the Plausibility and Belief
distributions.
A comment seems in order about the requirement that the uncertainties on all the input
parameters must be described by the same expert, which is mandatory for applying this proce-
dure. This constraint comes from the application of the extension principle in equation (2.7),
which introduces a strong dependence between the information sources supplying the input
possibility distributions. Indeed, the same confidence level for all the input variables is chosen
to build the α-cuts of the output variables; this suggests that if the expert source informing
on one parameter is rather precise or gives the same mean values to the confidence levels,
then the one informing on another parameter must also be precise, i.e., to ensure this, it must
be the same source. Further research effort should be spent in order to verify whether the
procedure here illustrated can be interpreted as a conservative counterpart to the calculus
of probabilistic variables under stochastic independence, due to the dependence between the
choice of confidence levels.

Figure 2.6 – Plausibility, Belief and Cumulative distributions of the portion of mission time in which the
component is in a fault state
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3

Case study

The present case study is taken from [Zille et al. 2009] and regards the degradation and main-
tenance of a check valve of a turbo-pump lubricating system in a Nuclear Power Plant. The
degradation modeling is based on information collected from dependability analyses (e.g.
FMECA) or directly from experts. This leads to the identification of one principal degradation
mechanism, i.e., fatigue, and a single failure mode, i.e. rupture. A Condition-Based Mainte-
nance (CBM) policy is applied to this component on a time horizon T = 104h. The performance
of the maintenance policy is assessed in terms of cost and component unavailability.

DEFINITION

Condition-based maintenance (CBM)

Condition-based maintenance designates a policy of performing maintenance only when the need
arises. This maintenance is performed after one or more indicators show that equipment is going
to fail or that equipment performance is deteriorating.

Compared with more traditional planned maintenance, CBM promises to improve system reliability,
decrease maintenance costs and decrease the possibility for human error during maintenance
operations. Its disadvantages are increased equipment costs (added cost of instrumentation and
monitoring devices), unpredictable maintenance periods and extra complexity due to themonitoring
equipment.

3.1 Degradation mechanism modeling

The fatigue phenomenon affecting the check valve is here modeled as a discrete-state,
continuous-time stochastic process that evolves among the following three degradation levels
(figure 3.1):

1. ‘Good’: a component in this state is new or almost new (no crack is detectable by
maintenance operators);

2. ‘Medium’: if the component is in this degradation level, then it is convenient to replace
it;

3. ‘Bad’: a component in this degradation state is very likely to experience a failure in few
working hours.

The choice of describing the degradation process by means of a small number of levels, or
degradation ‘macro-states’, is driven by industrial practice: experts usually adopt a discrete
and qualitative classification of the degradation states based on qualitative interpretations of
symptoms.
The probability density functions (pdfs) of the transition times are Weibull distributions,
with scale parameters ηij and shape parameters βij for the transitions from state i to state j
(i, j ∈ {1, 2, 3} and i < j). The Weibull distribution is commonly applied in fracture mechanics
(e.g., [Wormsen and Härkegård 2004]), especially under the weakest-link assumption [Remy et al.
2010]1.

1 Waloddi Weibull proposed his eponymous distribution in 1939 to model the variation in the relative tensile strength
of various materials as a function of their size. Brittle fractures in a material under stress are caused by the presence
of defects (presence of impurities introduced during casting, for example), which can be assumed to be uniformly
distributed in the material. The Weibull distribution arises from the weakest-link model for brittle fractures, the
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A further state, ‘Failed’, can be reached from every degradation state upon the occurrence of
a shock event. The exponential distribution with constant failure rate λj describes the failure
behaviour of the component while it is in state j, for every j = 1, 2, 3. The choice of assigning
a constant failure rate to every degradation state is driven by industrial practice: experts are
familiar with this setting and comfortable with providing information about the failure rate
values.

bad

medium

good

failed

Figure 3.1 – Degradation model of the check valve of a turbo-pump lubrication system

3.2 Maintenance policy

The CBM policy applied to the system is composed by the following tasks:

� Inspections: these actions, which are the only scheduled actions, are aimed at detecting
the degradation state of the component, and are considered to last 5h for a cost of 50€.
For the sake of simplicity, the component is considered as new after the inspection.

� CBM actions: Preventive Maintenance (PM) actions which are dependent on the result
of an inspection action. More precisely, if the component is found to be in state ‘Good’,
no action is performed, whereas if the degradation state is ‘Medium’ or ‘Bad’, then the
component is replaced and, consequently, the degradation state is taken back to ‘Good’.
Both these replacement actions are assumed to take 25h and cost 500€ each.

� Corrective Maintenance (CM) actions. The corrective action, performed after a compo-
nent failure, is assumed to be the replacement of the component. Due to the fact that this
event is unscheduled, this action brings an additional duration of 85h and an additional
cost of 3500€, with respect to the replacement after an inspection, leading to a total
duration of 100h and to a total cost of 4000€. In particular, the additional time may be
caused by the supplementary time needed for performing the procedure of replacement
after failure or to the time elapsed between the occurrence of the failure and the start of
the replacement actions.

The Inspection Interval (II ), which is the time span between two successive planned inspections,
is the only decision variable considered in this case study; optimization is then directed to the
search for the value of the II that minimizes the costs and maximizes the availability of the
component.

notion that a volume of material breaks at its weakest point, or that the probability that a homogeneously stressed
volume escapes brittle fracture is given by the probability that all the volume elements comprising it survive. The
Weibull probability distribution is today widely used in the reliability field.
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3.3 Analysis of the case study

The case study is firstly investigated in the unrealistic situation in which the values of the
model parameters θj,p , j = 1…k and p = 1…Mj are assumed to be exactly known (i.e., there is
no epistemic uncertainty). Table 3.1 reports the values of these parameters, which have been
taken from [Zille et al. 2009].

Parameters Nominal values

θ1,1 = η12 1861h

θ1,2 = β12 8

θ2,1 = η23 743h

θ2,2 = β23 8

θ3,1 = λ1 10−6h−1

θ4,1 = λ2 10−4h−1

θ5,1 = λ3 10−2h−1

Table 3.1 – Parameters of the probability distributions for the degradation model shown in figure 3.1
(situation without epistemic uncertainty)

Figure 3.2 shows the CDF of the portion of the mission time in which the component is
unavailable. Two main steps in the CDF can be observed, which can be explained by analyzing
the Monte Carlo simulation results, where almost 60% of the population experience one of
the following two behaviors:

� The component never fails during the mission time, and thus is inspected 4 times (at t =
2000h, 4000h, 6000h and 8000h); in 3 of these 4 inspections the component is found in
degradation states Medium or Bad (75h of downtime) and in the remaining one in degra-
dation state Good (5h of downtime). Thus, the total downtime is 80h, which constitutes
0.8% of T . Components experiencing this life explain the CDF step at d = 0.008.

� The component never fails during the mission time, and when inspected is always found
in degradation states Medium or Bad (100h of downtime). This behavior explains the
CDF step in correspondence of d = 0.01.

Figure 3.2 – CDF of the portion of the time horizon in which the component is in a down state

Notice that it is possible to lump together the information provided by the cumulative distri-
bution of the portion of downtime into the mean value of the distribution, i.e., the average
unavailability over the mission time, which provides an useful and easily interpreted indicator
of the component’s expected state during the mission. The estimated average unavailability
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is 0.011, and the related 68.3% confidence interval is [0.011 − 9.8 · 10−8, 0.011 + 9.8 · 10−8]
(this confidence interval is related to the Monte Carlo modelling, and not to any epistemic
uncertainty in the inputs).

3.4 Maintenance optimization

Figure 3.3 shows the estimated average unavailability of the component over the mission
time (i.e., the mean value of the component downtime over the entire mission time), with
the related 68.3% confidence interval, for different values of the inspection interval II. The
narrowness of the confidence intervals is due to the large number (5 · 104) of Monte Carlo
simulations performed in this case study; roughly speaking, the larger this number, the smaller
the (confidence) interval that with a given probability (confidence level) contains the true
value of the estimated variable. Thus, in the present case study the actual value of the average
unavailability over the mission time is affected by a small amount of estimation error, which
can be reduced by increasing the number of simulations.

Figure 3.3 – Average unavailability corresponding to different Inspection Intervals

Initially, there is a decreasing behavior that reaches a minimum at II=1000h/1500h; after
this point, the unavailability starts rapidly increasing. This is the result of two conflicting
trends: on one side, more frequent inspections lead to a greater probability of finding the
component in degradation states Medium and Bad: this prevents component failure and avoids
the corresponding large time to repair. On the other side, frequent replacements are inefficient,
since the component life is not completely exploited in this case. The minimum at II=1500h
represents the optimal balance between these two tendencies.
Figure 3.4 shows that the maintenance costs associated with different choices of the II have a
shape similar to that of mean unavailability. Thus, one may conclude that under the considered
maintenance policy, the best II is between 1000h and 1500h with respect to both availability
and cost objectives. On the other hand, both the mean unavailability and the maintenance cost
remain small, with little variation, when the value of the II ranges in the interval [1000h, 2000h].
This relative flatness of both performance indicators (unavailability and cost) allows a certain
freedom to choose the II within such range: other criteria (e.g., opportunistic maintenance) not
included in this analysis can be taken into account if the related advantages recover the small
losses due to the increase of unavailability and cost, that would be incurred when moving
away from the optimal value of 1500h.
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Figure 3.4 – Mean cost corresponding to different Inspection Intervals

3.5 Representation and propagation of the uncertainties

In this section, we apply the method illustrated in chapter 2 to the case study described above,
when the parameters of the distributions that model the transitions of the component among
the four states of figure 3.1 are ill-known and there is only one expert who estimates their
values.
To sum up, the uncertainty situation is the following:

� There are k = 5 uncertain variables, which define the 5 transition times reported in
table 3.2.

� The distributions associated with each variable are known, and depend on the set of the
uncertain parameters θj , j = 1…5 reported in table 3.2. In turn, there are Ν = 7 uncertain
parameters, which are the shape and scale parameters of the two Weibull distributions
and the failure rates pertaining to the three degradation levels (see table 3.2).

Uncertain
variables

Uncertain
parameters Description

Y1 θ1 = {θ1,1, θ1,2} Transition time from degradation level ‘Good’ to ‘Medium’

Y2 θ2 = {θ2,1, θ2,2} Transition time from degradation level ‘Medium’ to ‘Bad’

Y3 θ3 = {θ3,1} Transition time from degradation level ‘Good’ to ‘Failed’

Y4 θ4 = {θ4,1} Transition time from degradation level ‘Medium’ to ‘Failed’

Y5 θ5 = {θ5,1} Transition time from degradation level ‘Bad’ to ‘Failed’

Table 3.2 – Tailoring the general model to the considered case study

Notice that the simulation of a single Monte Carlo history (steps 1-5 of the procedure in § 2.3)
requires that the model g encodes a number of random variables k ≫ 5, since the history
corresponding to a given sample of these 5 uncertain times in general do not cover the entire
time horizon T. For example (figure 3.5 (a)), if the first transition is from state 1 to state ‘Failed’
and occurs at t=2000h, then the interval time between t=2000h+100h (i.e., the time instant at
the end of the repair action that starts after the failure) and T remains not investigated. This
problem can be overcome by thinking of g as a function that depends on a number K of size-5
tuples (the 5 probabilistic variables), and not just on 5 variables. Obviously, the number K
that allows to cover the entire mission time is also a random variable, since it depends on the
sampled times, which produce histories of different lengths. However, this is not a problem in
practice: the number K can be chosen such that it is reasonably sure that the sampled times
simulate histories of duration larger than the time horizon T. Then, the analysis focuses only
on the interval [0, T ] (figure 3.5 (b)). Finally, the output vector Z is made up of the portion of
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T in which the component is unavailable, and the cost associated to the maintenance policy
to be assessed; thus O = 2.

a)

b)

ON

OFF

OFF

ON

good

good good

failure

failure failure

medium mediummedium
good

maintenance

bad

T

T

Figure 3.5 – Two examples of simulated histories: the number of random variables does not suffice to cover
the entire time horizon T (a); number K allows simulation of histories longer than T (b)

3.6 Single expert information

In all generality, the difficulty in estimating the uncertain parameters of the model may heavily
vary from one case to another; the weighted families {(Aj,p

1 , qj,p1 ), (Aj,p
2 , qj,p2 ),…, (Aj,p

nj,p , q
j,p
nj,p)}

provided by the expert to represent his/her knowledge about the parameters are expected to
reflect this difference.
Theweighted families elicited from the single expert for this case study are reported in table 3.3.
It is assumed that the expert is able to infer the information on the transition times between
the different states, from the observations gathered during past component inspections. For
example, let us suppose that a component is monitored every 100h, and that it was found
in degradation state Medium at t = 1800h; if the component is found in degradation state
Bad upon the next observation at t = 1900h, then the expert acquires the information that
the transition from degradation state Medium to Bad occurred in the interval ]1800h, 1900h[.
This kind of information can be used to define the scale and shape parameters of the Weibull
distributions representing these transitions. Notice, however, that the amount of uncertainty
affecting the estimation of the scale and shape parameters is expected to be very different:
the expert has a more refined knowledge on the scale parameter which can be seen as the
time until which almost the 65% of the components have experienced a transition, than on
the shape parameter which is only related to the slopes of the Weibull probability plots; these
are expected to be difficult to estimate from the observations of the components’ degradation
states during the inspections.

Parameters Confidence levels

qj,p1 = 0.1 qj,p2 = 0.5 qj,p3 = 0.95 UoD

min max min max min max min max

θ1,1 η12 1843 1880 1815 1908 1720 2001 1700 2020

θ1,2 β12 7.5 8.5 7 9

θ2,1 η23 735 750 725 762 687 800 650 850

θ2,2 β23 7.5 8.5 7 9

θ3,1 λ1 9 · 10−7 1.1 · 10−6 1 · 10−7 5 · 10−6

θ4,1 λ2 9 · 10−5 1.1 · 10−4 10−5 5 · 10−4

θ5,1 λ3 0.9 · 10−2 1.1 · 10−2 0.85 · 10−2 1.15 · 10−2

Table 3.3 – Confidence levels and associated intervals

With regards to the scale parameters (rows 4 and 6 of table 3.3), it has been assumed that the
expert provides three nested intervals corresponding to the confidence levels qj,p1 = 0.1, qj,p2 =
0.5 and qj,p3 = 0.95, j = {1, 2} and p = 1, and the UoDs within which these parameters range.
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With regards to the shape parameters (rows 5 and 7 of table 3.3), given the difficulty in their
estimation, it has been assumed that the expert provides just the UoDs and the intervals
corresponding to the confidence level qj,p3 = 0.95. In particular, the UoDs, which contain the
true values of the parameters with probability 1, are very large: the expert tends to reduce
the sets of values that surely do not contain the true values of the scale parameters.
Finally, with reference to the failure rates, the estimation of the Mean Time To Failure (MTTF,
i.e., the inverse of the failure rate) of the components in a given degradation state may not be
easy; in fact, failure from the first degradation state is usually a rare event, whose frequency
is difficult to estimate even in a qualitative way, whereas the lack of precise knowledge of
the time instants in which the components transition towards the other degradation states
affects the evaluation of the mean times to failure associated to these states; that is, if the
time instant since one has to start to count is unknown, then the resulting measure of the
time to failure is biased, especially if the component is rarely inspected. Thus, a more vague
description of the uncertainty is provided by the expert for these parameters of the model
g. Namely, he/she gives just the intervals corresponding to the 0.95 confidence level and the
UoD, as for the scale parameters of the Weibull distributions. The extreme points of these
intervals are reported in rows 8-10, columns 7-10 of table 3.3.
On the other hand, the larger the number of the uncertain parameters, the larger the space in
which the maxima andminima of the function g in equations (2.4) and (2.5) have to be searched
for, and the larger the required computational time. In this regard, a sensitivity analysis can be
performed preventively in order to identify which are the input parameters whose variations
lead to smaller changes in the output value; this allows to neglect the uncertainty affecting
these parameters while losing a small amount of information and considerably reducing the
computational times.
In the present case study, the sensitivity analysis is performed by a local approach [Zio 2009],
i.e., the uncertain parameters of the model are varied one by one within their UoD, while the
other parameters take their nominal values. The results of the analysis are reported in table 3.4:
the portion of T in which the component is unavailable is estimated in correspondence of
the extreme values of the UoD of every uncertain parameter. For example, the estimation of
D is 0.0142 in correspondence of the lower bound of the UoD of the scale parameter of the
first Weibull distribution (1700h), whereas it is 0.0082 in correspondence of the upper bound
(2020h). In particular, these values are reported with the related 68.3% confidence interval.
The last column of the table reports Δ, i.e., the differences between the average unavailability
corresponding to the two limiting situations. These quantities give an estimation of the amount
of output uncertainty (i.e., the unavailability uncertainty) which is due to the variation of
the model parameters. In practice, high values of Δ indicate the importance of properly
considering the uncertainty in the parameters, whereas low values correspond to parameters
whose uncertainty has no remarkable effect on the model output uncertainty.
In this case, the failure rate associated to the degradation state ‘Bad’ turns out to be the
parameter which the model is less sensitive to. Then, the uncertainty affecting this parameter
is not considered and the nominal value (table 3.1) is assigned to it.
Notice that the set of unavailability values reported in columns 2 and 3 of table 3.4 are not useful
for representing the uncertainty on the unavailability, which must take into account not only
the input parameter extreme values, but all the available information on the input parameter
uncertainties, i.e., the possibility distributions. Thus, the sensitivity analysis proposed here
cannot replace the uncertainty representation and propagation tasks carried out in this work,
but can be used to identify the input parameters whose uncertainty is most relevant.
Finally, notice that for every uncertain parameter and for any confidence level, the value
considered in [Zille et al. 2009] is the middle point of the corresponding intervals provided by
the expert.
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Parameter Minima Maxima Δ

η12 0.0142 ± 1.2 · 10−7 0.0082 ± 8.3 · 10−8 6.0 · 10−3

β12 0.0116 ± 1.1 · 10−7 0.0108 ± 8.8 · 10−8 0.8 · 10−3

η23 0.0119 ± 1.0 · 10−7 0.0105 ± 8.7 · 10−8 1.4 · 10−3

β23 0.0112 ± 9.9 · 10−8 0.0110 ± 1.2 · 10−7 0.2 · 10−3

λ1 0.0110 ± 9.5 · 10−8 0.0114 ± 9.6 · 10−8 0.4 · 10−3

λ2 0.0103 ± 8.2 · 10−8 0.0144 ± 1.4 · 10−7 4.1 · 10−3

λ3 0.0110 ± 9.5 · 10−8 0.0111 ± 8.8 · 10−8 0.1 · 10−4

Table 3.4 – Results of the local sensitivity analysis

3.7 Possibilistic representation of the epistemic uncertainties

Figure 3.6 reports the possibility distributions of the uncertain parameters of the case study,
corresponding to the weighted families of table 3.3. These are obtained by applying the
procedure showed in § 2.2.

3.7.1 Uncertainty propagation

Figure 3.6 shows the results obtained by applying the FRVs-based method to the considered
case study. The Plausibility and Belief distributions of the portion of the mission time in
which the component is in a down state are quite distant; this shows that for some favorable
combinations of the uncertain parameters the system results to be much more available than
for other combinations of the uncertain parameters which lead to high portions of downtime.
Notice also that, as expected, the Plausibility and Belief distributions bracket the CDF found
in the case in which the uncertainty on the model parameters is not accounted for (§ 3.3).
Notice that the results provided by themethod discussed in this work arelack of easily

understood
indicators

difficult to interpret.
This is due to the fact that, unlike the case of no uncertainty, it is not possible to lump together
the information provided by themethod, i.e., the Plausibility and Belief function, into indicators
such as their mean values which are easy to interpret. This impossibility is due to the fact that
the DSTE does not allow the definition of the mean value of an uncertain variable. However,
in order to give an interpretation to the obtained results, one can focus on a given percentile
of the belief and plausibility distributions. For example, the interval bounded by the values of
the 95th percentile of the Plausibility and Belief distributions is [0.015, 0.026]; the extremes of
this interval constitute the lower and upper bounds, respectively, of the 95th percentile of the
portion of downtime in the mission time. In other words, this interval tells us that the 95%
chance of the downtime of the component can be neither smaller than 1.5% nor larger than
2.6% of the mission time. Thus, if one is interested in the worst case, then one can assume
that the 95th percentile of the downtime is 0.026, whereas in a more optimistic view, it can be
valued at 0.015.
Figures 3.8 and 3.9 report the Plausibility and Belief distributions of the portion of downtime
over the mission time and the total cost, respectively, corresponding to three different values
of the II, i.e., II=1000h, II=1500h and II=2000h. These results do not lend themselves to an
easy interpretation and do not allow to make a decision in a simple way. Indeed, while it is
easy to state that inspecting the component every 1000h is better than every 2000h, since
these distributions do not overlap, answering the question ‘which value of the II is best?’ is
not trivial, as the distributions corresponding to II=1500h and II=1000h overlap. This calls
for devising a method in support of maintenance decision-makers, to help them get around
these distributions. Notice also that the small amount of uncertainty on the values of both
downtime and cost, when the component is inspected every 1000h, derives from the fact
that the ‘crowd’ of the simulated Monte Carlo component histories (i.e., the large number of
components experiencing the same behavior) remains very compact in this case.
On the contrary, when the uncertainties affecting the parameters are not accounted for, the
identification of the best value of II is more straightforward, since it is usually accepted to
consider the mean value of the portion of mission time in which the component is faulty or
the mean value of the cost as good indicators of the performance of the maintenance policy.
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3.7. Possibilistic representation of the epistemic uncertainties

Figure 3.6 – Possibility distributions of the uncertain parameters of the case study

Figure 3.7 – Plausibility and Belief distributions of the portion of mission time in which the component is
unavailable, and the CDF corresponding to the case with no uncertainty
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Figure 3.8 – Plausibility and Belief distributions of the portion of time horizon in which the component is
in a fault state, for different values of the control variable II

Figure 3.9 – Plausibility and Belief distributions of the cost associated to the maintenance policy, for
different values of the control variable II

26



4

Conclusions

Uncertainty affects the parameters of the models of the behavior of components subject to a
given maintenance policy. Incorrect treatment of such uncertainty may lead to serious bias
of the outcome of the analysis, possibly non-conservatively. In practice, experts are often
the only source of information on these parameters, and provide it in an ambiguous and
qualitative form. Most commonly, all that is known is that a certain value belongs to a certain
interval [Nicolai et al. 2009]. The representation of the uncertainty of this information in terms
of probability distributions would force a set of assumptions, with introduction of biases and
loss of generality. In this work, a methodology has been proposed based on the following
steps:

1. Elicitation of the expert knowledge on the model parameters.

2. Representation of the uncertainty associated to the expert’s judgment, avoiding intro-
duction of unjustified, biasing assumptions. In this respect, notice that the choice of any
probability distribution to represent the uncertainty in the expert’s assignments would
be absolutely arbitrary, if the expert is not able to provide this additional information.

3. Propagation of the uncertainty to the maintenance performance indicators.

The methodology has been applied to a case study concerning the degradation model of a
check valve of a turbo-pump lubricating system in a nuclear power plant. The study has shown
that neglecting uncertainty may drive the maintenance decision-maker towards incorrect
conclusions. In this case, if the unavailability computation were performed without taking
into account the uncertainty on the input parameters, the decision-maker would set the
inspection intervals between maintenance actions to the value of II=1000h, whereas a proper
consideration of the uncertainties through the use of FRV suggests that, on the basis of the
available knowledge, this choice for the maintenance inspection interval is not better than
other intervals such as II=1500h and II=2000h.

The main limitations of the methodology discussed in the present document are:

� It is necessary for a single expert to be knowledgeable, at least qualitatively, on all
uncertain parameters and, furthermore, to be able to provide intervals of values for the
uncertain parameters with associated confidence levels: this may be very difficult in
practice. However, the FRVs-based method can be also applied when the expert provides
just one interval of possible values per parameter, thus avoiding the problem of the
confidence intervals.

� The results provided are difficult to interpret and manage. Thus, how to exploit these
results from the decision-maker’s point of view remains an open issue, which needs to
be addressed in future work.

� Very large memory demand and computational times are required. Table 4.1 reports
the computational times in case of 2000 samples and 8000 combinations of values of
the uncertain parameters. However, given that Matlab is an interpreted programming
language, a tool developed in other environments may perform better. This issue will be
tackled in future work.

Further research effort needs to be spent in order to verify whether the procedure illustrated
here can be interpreted as a conservative counterpart to the calculus of probabilistic variables
under stochastic independence, due to the dependence between the choice of confidence
levels.
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Parameters Values

Number of FRVs 2000

Number of combinations of uncertain parameters 8000

CPU time (Intel Core 2 duo, 3.17 GHz, 2GB RAM) ≈ 30h

Table 4.1 – Computational requirements of FRVs-based method
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