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Introduction

Context

Although the use of risk assessment and uncertainty analysis for decision-making may take
different perspectives, there is a shared and common understanding that these tools provide
useful decision support, in the sense that their outcomes inform decision makers, insofar as
the technical risk side of the problem is relevant for the decision [Aven 2010b].

The actual decision outcome for a critical situation involving a potential for large consequences
typically derives from a thorough process which combines:

� an analytic evaluation of the situation (i.e., the risk assessment) by rigorous, replicable
methods evaluated under agreed protocols of an expert community and peer-reviewed to
verify the assumptions underpinning the analysis;

� a deliberative group exercise in which all involved stakeholders and decision makers
collectively consider the decision issues, look into the arguments for their support,
scrutinize the outcomes of the technical analysis and introduce all other values (e.g. social
and political) not explicitly included in the technical analysis.

This way of proceeding allows the technical analysis to remain manageable, while being
complemented by deliberation to ensure coverage of the non-modelled issues. In this way, the
analytic evaluation (i.e., the risk assessment) supports the deliberation by providing numerical
outputs1 and also all the argumentations behind the analysis itself, including the assumptions,
hypotheses, parameters and their uncertainties [Nilsen et Aven 2003].

With respect to the latter issue, the key point is to guarantee that uncertainties are taken
into account in each step of the risk assessment procedure in a manner which ensures that
the information and knowledge relevant for the problem are represented in the most faithful
manner. In particular, uncertainties have to be

1. systematically identified and classified;

2. represented and described by rigorous mathematical approaches;

3. propagated through the steps of the risk assessment procedure onto the risk measures
until the decisions.

The bottom line concern with respect to uncertainty in decision-making is to provide the
decision makers with a clearly informed picture of the problem upon which they can
confidently reason and deliberate [Zio 2009; Aven et Zio 2011].

For more than 30 years, probabilistic analysis has been used as the basis for the analytic
process of risk assessment or hazardous systems and the treatment of associated uncertainties.
The common term used is Probabilistic Risk Assessment (PRA, also referred to as Quantitative
Risk Assessment, QRA). Its first application to large technological systems (specifically nuclear
power plants) dates back to the early 1970s [USNRC 1975], but the basic analysis principles
have not significantly changed since.

1 Point estimates and distributions of the relevant safety parameters, possibly to be compared with predefined
numerical safety criteria for further guidance to the decision.
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However, the purely probability-based approaches to risk and uncertainty analysis can be chal-
lenged under the common conditions of limited or poor knowledge on the high-consequence
risk problem, for which the information available does not provide a strong basis for a
specific probability assignment: in such a decision-making context, many stakeholders may
not be satisfied with a probability assessment based on subjective judgments made by a group
of analysts. In this view, a broader risk description is sought where all the uncertainties are
laid out ‘plain and flat’, with no additional information inserted in the analytic evaluation
in the form of assumptions and hypotheses which cannot be proven right or wrong. This
concern has sparked a number of investigations in the field of uncertainty representation and
analysis, which has led to the developments of frameworks alternative to the probabilistic one
(e.g., probability bounds analysis [Ferson et Ginzburg 1996], imprecise probability [Walley 1991],
random sets [Dempster 1967; Shafer 1976] and possibility theory [Dubois et Prade 1988; Dubois
2006]).

Finally, decision-makers commonly seek further protection in the implementation of the
decision by adding conservatisms and performing traditional engineering approaches of
‘defense-in-depth’defense in depth to bound the uncertainties and in particular the ‘unknown unknowns’
(completeness uncertainty).

Objectives of this document

In this wide framework of uncertainty identification, representation and propagation, the
objective of the present document is twofold:

1. analyzing and describing in detail the (traditional) steps of the risk assessment procedure;

2. systematically identifying and classifying the sources of uncertainty affecting each step
of the risk assessment procedure.

The technical details about risk assessment will be exposed for clarity to analyze and judge
how each step is affected by uncertainty and how this impacts the communication of risk to
decision makers, in the typical settings of high-consequence risk analysis of complex systems
with limited knowledge on their behaviour. The driver of the critical analysis is really the
decision-making and the need to feed it with representative information derived from the risk
assessment, to robustly support the decision.

The problem of uncertainty representation and propagation will be described in future docu-
ments in this collection.

Document structure

The remainder of the document is structured as follows:

� Chapter 2 presents the concepts of risk and risk analysis;

� In chapter 3, the problems of uncertainty and uncertainty analysis are presented within
the framework of risk assessment;

� In chapter 4, the different steps of the risk assessment procedure are analyzed in detail
and the sources of uncertainty affecting each of these steps are highlighted and briefly
described.

Three annexes provide more detail on specific tools used during a probabilistic risk assessment:

� Annex A provides a description of the HAZID technique;

� Annex B describes the fault tree technique;

� Annex C describes the construction and evaluation of an event tree.
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2

Risk and risk analysis

2.1 From defence in depth to probabilistic risk assessment

The subject of risk nowadays plays a relevant role in the design, development, operation
and management of components, systems and structures in many types of industry. In all
generality, the problem of risk arises wherever there exists a potential source of damage
or loss, i.e. a hazard hazard(threat) to a “target”, such as people or the environment. Under these
conditions, safeguards are typically devised to prevent the occurrence of the hazardous
conditions, and protections are put in place to protect from and mitigate its associated
undesired consequences. The presence of a hazard does not suffice itself to define a condition
of risk; indeed, inherent in the latter there is the uncertainty that the hazard translates from
potential to actual damage, bypassing safeguards and protections. In summary, the notion
of risk involves some kind of loss or damage that might be received by a target and the
uncertainty of its transformation into an actual loss or damage.

One classical way to defend a system against the uncertainty of its failure scenarios has been
to:

1. identify the group of failure event sequences leading to credible worst-case accident
scenarios Si design-basis

accident
(design-basis accidents);

2. predict their consequences xSi ;

3. accordingly design proper safety barriers for preventing such scenarios and for protect-
ing against, and mitigating, their associated consequences [Zio 2009].

Within this approach (often referred to as a structuralist defense-in-depth approach), safety
margins against these scenarios are enforced through conservative regulations of system
design and operation, under the creed that the identified worst-case, credible accidents worst-case accidentwould
envelop all credible accidents for what regards the challenges and stresses posed on the system
and its protections. The underlying principle has been that if a system is designed to withstand
all the worst-case credible accidents, then it is ‘by definition’ protected against any credible
accident [Apostolakis 2006].

This approach has been the one classically chosen — and for many technologies is still the
leading approach — to protect a system from the uncertainty of the unknown failure behaviors
of its components, systems and structures, without directly quantifying the uncertainty, to
provide reasonable assurance that the system can be operatedwithout undue risk. However, the
practice of referring to “worst” cases implies strong elements of subjectivity and arbitrariness
in the definition of the accidental events, which may lead to the consideration of scenarios
characterized by really catastrophic consequences, although highly unlikely. This may lead to
the imposition of unnecessarily stringent regulatory burdens and thus excessive conservatism
in the design and operation of the system and its protective barriers, with a penalization of the
industry. This is particularly so for those high-consequence industries, such as the nuclear,
aerospace and process ones, in which accidents may lead to potentially large consequences.

For this reason, an alternative approach has been pushed forward for the design, regulation
and management of the safety of hazardous systems. This approach, initially motivated by the
growing use of nuclear energy and by the growing investments in aerospace missions in the
1960s, is based on the principle of quantifying the reliability of the accident-preventing and
consequence-limiting protection systems which are designed and implemented to intervene
in protection against all potential accident scenarios. This approach no longer differentiates

3
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between credible and incredible, or large and small accidents [Farmer 1964]. Initially, a number
of studies were undertaken to investigate the merits of a quantitative approach based on
probability for the treatment of the uncertainty associated with the occurrence and evolution
of accident scenarios [Garrick et Gekler 1967]. The findings of these studies motivated the first
complete and full-scale probabilistic risk assessment of a nuclear power installation [USNRC
1975]. This extensive work showed that, indeed, the dominant contributors to risk need not
be necessarily the design-basis accidents, a “revolutionary” discovery which undermined
the fundamental creed underpinning the structuralist, defense-in-depth approach to safety
[Apostolakis 2006].

Selecting the worst case
scenario is a somewhat
subjective process, and can
lead to excessively strong
safety requirements

Following these lines of thought, and after several “battles” for their demon-
stration and valorisation, the probabilistic approach to risk analysis (PRA)
has arisen as an effective technique for analysing system safety, not limited
only to the consideration of worst-case accident scenarios but extended
to looking at all feasible scenarios and their related consequences. The
probability of occurrence of such scenarios becomes an additional key
aspect to be quantified in order rationally and quantitatively to handle un-
certainty [USNRC 1975; NASA 2002; Aven 2003; Bedford et Cooke 2001; Henley
et Kumamoto 1992; Kaplan et Garrick 1981; McCormick 1981; USNRC 1983].

From the view point of safety regulations, this has led to the introduction of new criteria
which account for both the consequences of the scenarios and their probabilities of occurrence
under a now rationalist, defense-in-depth approach. Within this approach to safety analysis
and regulation, reliability engineeringreliability

engineering
takes on an important role in the assessment of the

probability of occurrence of the accident scenarios as well as the probability of the functioning
of the safety barriers implemented to hinder the occurrence of hazardous situations and
mitigate their consequences if such situations should occur [Zio 2009].

2.2 The framework of PRA

The basic analysis principles used in a PRA can be summarized as follows. A PRA system-
izes the knowledge and uncertainties about the phenomena studied by addressing three
fundamental questions [USNRC 1983]:

� Which sequences of undesirable events transform the hazard into an actual damage?

� What is the probability of each of these sequences?

� What are the consequences of each of these sequences?

This leads to a widely accepted, technical definition of risk in terms of a set of triplets [Kaplan
et Garrick 1981] identifying the sequences of undesirable events leading to damage (the accident
scenarios), the associated probabilities and the consequences. In this view, the outcome of a
risk analysis is a list of scenarios quantified in terms of probabilities and consequences, which
collectively represent the risk. On the basis of this information, the designer, the operator, the
manager and the regulator can act effectively so as to manage (and possibly reduce) risk (cf.
figure 2.1).

In the PRA framework, the knowledge on the problem and the related uncertainties are
systematically manipulated by rigorous and replicable probability-based methods to provide
representative risk outcomes such as the expected number of fatalities2, the probability that a
specific person shall be killed due to an accident (individual risk) and frequency-consequence
(f − n) curves expressing the expected number of accidents (frequency f ) with at least n
fatalities.

In spite of the maturity reached by the methodologies used in PRA, a number of new and
improved methods have been developed in recent years to better meet the needs of the
analysis, in light of increasing system complexity and to respond to the introduction of new
technological systems. Many of the methods introduced allow increased levels of detail and
precision in the modelling of phenomena and processes within an integrated framework

2 The expected number of fatalities due to the operation of a plant or equipment is the mathematical expectation of
the number of fatalities per year due to accidents on the plant. Anticipated fatalities are commonly expressed in
terms of indices such as PLL (Potential Loss of Lives) and FAR (Fatal Accident Rate).
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2.2. The framework of PRA

Scenario selection

Probability assessement Consequence assessment

Risk assessment

Comparison with criteria

Implementation of risk
controls

Residual risk: { (Si, p(Si), conseq(Si)) }

Figure 2.1 – The risk analysis process, which leads to a set of triplets comprising the accident scenarios Si
and their estimated probability and consequences.

of analysis covering physical phenomena, human and organisational factors as well as
software dynamics (e.g. [Mohaghegh et al. 2009]). Other methods are devoted to the improved
representation and analysis of risk and related uncertainties, in view of the decision-making
tasks that the outcomes of the analysis are intended to support. Examples of newly introduced
methods are Bayesian Belief Networks (BBNs), Binary Digit Diagrams (BDDs), multi-state reliability
analysis, Petri Nets and advanced Monte Carlo simulation tools. For a summary and discussion of
some of these models and techniques, see [Bedford et Cooke 2001; Zio 2009].

The probabilistic analysis underpinning PRA stands on two lines of thinking: the traditional
frequentist approach and the Bayesian approach [Bedford et Cooke 2001; Aven 2003]. The
frequentist approach is typically applied in the presence of a large amount of relevant data;
it is founded on well-known principles of statistical inference, the use of probability models,
the interpretation of probabilities as relative frequencies, point values, confidence intervals
estimation and hypothesis testing.

The Bayesian approach is based on the use of subjective probabilities. It is applicable in
cases where data is scarce. The steps in the Bayesian approach are:

1. Establish adequate probability models representing the aleatory uncertainties, i.e. the
variabilities in the phenomena studied, such as the lifetimes of a type of unit.

2. Establish probability models for the epistemic uncertainties (due to incomplete knowl-
edge or lack of knowledge) about the values of the parameters of the models. They
are represented by prior subjective probability distributions. When new data on the
phenomena studied become available, Bayes’ formula is used to update the representation
of the epistemic uncertainties in terms of the posterior distributions.

3. The predictive distributions of the quantities of interest (the observables, for example the
lifetime of new units) are derived by applying the law of total probability. The predictive
distributions are epistemic but they also reflect the inherent variability represented by
the underlying probability models.
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DEFINITION

Subjective probability

Subjective probability is a measure of a person’s degree of belief concerning the plausibility of an
event. From a conceptual viewpoint, a subjective probability is commonly linked to the betting
interpretation that goes back to the foundational literature on subjective probabilities (see e.g.
[de Finetti 1974; Singpurwalla 2006]). In this interpretation, one’s degree of belief in E is p if and only
if p units of utility is the price at which one would buy or sell a bet that pays 1 unit of utility if E,
and pays 0 if not E.

However, to avoid a mixture between uncertainty assessments and value judgments, many analysts
prefer to use the comparison with a standard interpretation, for example drawing a ball from an
urn [Lindley 2000; Aven 2003]. The term “subjective probability” is also debated, since it gives the
impression that the probability and the associated assessment are non-scientific and arbitrary; it
is often replaced by terms such as “judgmental probability” and “knowledge-based probability”
[Singpurwalla 2006; Aven 2010a].
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3

Uncertainty and uncertainty analysis in
risk assessment

In all generality, the quantitative analyses of the phenomena occurring in many engineering
applications are based on mathematical models which are then turned into operative computer
codes for simulation. A model provides a representation of a real system dependent on a
number of hypotheses and parameters. The model can be deterministic (e.g. Newton’s dynamic
laws or Darcy’s law for groundwater flow) or stochastic (e.g. the Poisson model for describing the
occurrence of earthquake events).

In practice, the system under analysis can not be characterized exactly – the knowledge of
the underlying phenomena is incomplete. This leads to uncertainty on the analysis which
can be defined as a state of the analyst who cannot describe or foresee a phenomenon due to
i) an intrinsic variability of the phenomenon itself or ii) lack of knowledge and information.
This leads in practice to uncertainty on both the values of the model parameters and on
the hypotheses supporting the model structure. Such uncertainty propagates within the
model and causes variability in its outputs: for example, when many values are plausible
for a model parameter, the model outputs associated to the different values of the uncertain
parameter will be different; the quantification and characterization of the resulting output
uncertainty is of paramount importance, and it defines the scope of the uncertainty analysis.

DEFINITION

Uncertainty analysis

An uncertainty analysis aims at determining the uncertainty in analysis results that derives from
uncertainty in analysis inputs [Helton et Oberkampf 2004]. We may illustrate the ideas of the uncer-
tainty analysis by introducing a model f (x), which depends on the input quantities x and on the
function f ; the quantity of interest x is computed by using the model y = f (x). The uncertainty
analysis of y requires an assessment of the uncertainties about x and a propagation through the
model f to produce an assessment of the uncertainties about y .

Typically, the uncertainty about x and the uncertainty related to the model structure f , i.e., uncer-
tainty due to the existence of alternative plausible hypotheses on the phenomena involved, are
treated separately. While the first source of uncertainty has been widely investigated and more or
less sophisticated methods have been developed to deal with it, research is still ongoing to obtain
effective and agreed methods to handle the uncertainty related to the model structure [USNRC 2009].
See also [Aven 2010b] who distinguishes between model inaccuracies (the differences between y and
f (x)), and model uncertainties due to alternative plausible hypotheses on the phenomena involved.

Uncertainty is thus an unavoidable component affecting the behavior of systems and more so
with respect to their limits of operation. Despite all the dedicated effort put into improving the
understanding of systems, components and processes through the collection of representative
data, the appropriate characterization, representation, propagation and interpretation of
uncertainty remains a fundamental element of the risk analysis of any system. Following this
view, uncertainty analysis is considered an integral part of PRA, although it can also exist
independently in the evaluation of a model.

In what follows, the main causes (§ 3.1) and types (§ 3.2) of uncertainty are discussed within a
risk assessment framework.
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3.1 Causes of uncertainty

Different causes of uncertainty can be recognized in risk analysis [Armacosta et Pet-Edwards
1999; Zimmermann 2000]:

� Lack of information (or knowledge): Lack of information, knowledge and/or data on
the phenomena, systems and events to be analyzed is the main source of uncertainty: it
can be of quantitative (e.g., the analyst does not know the precise value of the probability
of a given event of interest) or qualitative (e.g., the analyst knows the probabilities of the
events of interest but the available information does not allow a deterministic description
of the problem to be analyzed) nature.
Another situation characterized by lack of knowledge is called approximation: it takes
place when the analyst does not have enough information to describe exhaustively the
phenomenon of interest or when he/she deliberately uses a lower level of detail than the
one achievable. In some cases, the approximation is declared explicitly, while in other
cases it is hidden.
Obviously, this cause of uncertainty can be reduced by gaining more notions, information
and data about the problem at hand.

� Abundance of information (or knowledge): This kind of uncertainty is due to the
human incapacity of assimilating and elaborating many pieces of data and information
at the same time. In this situation, the analyst usually focuses his attention only on
those parameters and those pieces of data and information that he/she considers more
important, neglecting the others. The identification of a rigorous (and possibly automated)
procedure to select (among hundreds or thousands) the relevant data, information and
parameters for the application at hand is the most critical issue.
The analyst has to face this kind of uncertainty when, for example, he/she has to choose
among different models for simulating a given phenomenon.

� Conflicting nature of pieces of information/data: It may happen that some pieces
of available information and data suggest a given behavior of the system, while others
suggest a different one. In this case, increasing the amount of available information and
data would not decrease the uncertainty, but rather it would increase the conflict among
different pieces of information and data. This conflict can be due to the fact that i) some
pieces of information are affected by errors, but the analyst cannot identify them, ii) some
of the available pieces of data are not relevant to the problem at hand or iii) the model of
the system used by the analyst is not correct (e.g., it is characterized by bias). Again, in
order to reduce this source of uncertainty, the analyst has to make an accurate choice
among the available pieces of information and data and possibly discard some of them to
reduce the conflict.

� Measurement errors: The measurement of a physical quantity (temperatures, weights,
lengths, …) is always affected by uncertainty due to i) the imprecision of the analyst who
performs the measurement or ii) the mechanical tolerance of the instrument adopted.

� Linguistic ambiguity: All languages contain words that have different meanings de-
pending on the context of analysis. Note that this source of uncertainty can be considered
as due to “lack of information” because providing more details about the context of
analysis would help to reduce the associated uncertainty.

� Subjectivity of analyst opinions: Uncertainty may derive from the subjective interpre-
tation of the available pieces of information and data by the analyst: different analysts
may provide different interpretations of the same piece of information and data depend-
ing on their cultural background and competence in the field of analysis. This source
of uncertainty can be reduced by resorting to the elicitation of multiple opinions from
different experts.

8



3.2. Types of uncertainty

3.2 Types of uncertainty

In the context of PRA, uncertainty is conveniently distinguished into two different types:
“aleatory” and “epistemic” [Apostolakis 1990; Helton et Oberkampf 2004; USNRC 2009]. The former
refers to phenomena occurring in a random way: probabilistic modeling offers a sound and
efficient way to describe such occurrences. The latter captures the analyst’s confidence in the
PRA model by quantifying the degree of belief of the analysts on how well it represents the
actual system; it is also referred to as state-of-knowledge or subjective uncertainty and can be
reduced by gathering information and data to improve the knowledge on the system behavior.

Aleatory uncertainties aleatory uncertaintyconcern, for instance, the occurrence of the events that define the
various possible accident scenarios, the time to failure of a component or the random variation of
the actual geometrical dimensions and material properties of a component or system (due to differences
between the as-built system and its design upon which the analysis is based) [USNRC 1990; Helton
1998; USNRC 2002]. Two examples of classical probabilistic models used to describe this kind
of uncertainties in PRAs are the Poisson model for events randomly occurring in time (e.g.,
random variations of the operating state of a valve) and the binomial model for events occurring
“as the immediate consequence of a challenge” (for instance, failure of a safety valve when the
pressure in a vessel increases rapidly3) [USNRC 2005; Hofer et al. 2002; Krzykacz-Hausmann 2006].

Epistemic uncertainty epistemic
uncertainty

is associated to the lack of knowledge about the properties and
conditions of the phenomena underlying the behavior of the systems. This uncertainty
manifests itself in the model representation of the system behavior, in terms of both (model)
uncertainty in the hypotheses assumed and (parameter ) uncertainty in the (fixed but poorly
known) values of the parameters of the model [Helton et Oberkampf 2004]. Both model and
parameter uncertainties associated to the current state of knowledge of the system can
be represented by subjective probability distributions within a Bayesian approach to PRA
[Apostolakis 1990, 1995, 1999].

Whereas epistemic uncertainty can be reduced by acquiring knowledge and information on the
system, aleatory uncertainty cannot be reduced in this way, and for this reason is sometimes
called irreducible uncertainty.

3 Called failure on demand of a safety equipment.
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4

Risk analysis: main steps and
corresponding sources of uncertainty

Risk analysis comprises two parts: the first one aims at identifying malfunctioning, operative
errors and external events that may cause accidents in the system/plant of interest; the second
one aims at analyzing in detail the accidents that aremore critical from the point of view of their
frequency and/or their consequences. The final objective is to identify and quantify the impact
of accidents and malfunctions (e.g., failures, operation errors, maintenance errors, external events)
on the system/plant, production, assets and operators, the population and the environment.
This evaluation allows to provide indications about the design of the system/plant (e.g., the
installation of prevention/mitigation systems, the modification of the operation/maintenance procedures,
…) in order to reduce the risk for production, assets, operators, population and environment.

Within this framework, the analytic process of risk assessment for a system is traditionally
divided into five steps:

1. system description and modeling (described in § 4.1);

2. identification of the hazards related to the system functioning (§ 4.2);

3. selection of the events that may initiate accident sequences (or scenarios), hereafter called
Initiating (or Initiator) Events (IEs) (§ 4.3);

4. quantitative analysis of the accident sequences deriving from the selected IEs (i.e., esti-
mation of their probabilities/frequencies and consequences) (§ 4.4);

5. evaluation of risk and decision-making (or deliberative) process (i.e., identification, plan-
ning and implementation of the most effective actions to reduce risk) (§ 4.5).

The uncertainties associated with each of these steps are described in the following sections.

4.1 STEP 1 System description and modeling

The main features of the first step of the risk assessment procedure (namely, system description
and modeling) are described in § 4.1.1, whereas the corresponding sources of uncertainty are
summarized in § 4.1.2.

4.1.1 Description

The construction of the model of a system requires the following steps:

i. comprehension of the hierarchical, logical and functional relations linking the physical
elements of the system at any level of detail (e.g., representation of series/parallel logic relations
between components, identification of the main functions performed by single components or
groups of components, construction of block diagrams, …);

ii. construction of a parametric model of the system, i.e., a mathematical representation of
the behavior of the system dependent on the values of both known and unknown internal
parameters;
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iii. calibration of the mathematical model by means of data (component, software and human
failure data, maintenance record data and so on) collected (when possible) from the real
system under analysis [NPRD 1995]. Crudely put, calibration is the activity of adjusting
the internal parameters of the models until the outputs of the model fit the available data
[Kennedy et O’Hagan 2001].

4.1.2 Sources of uncertainty

The sources of uncertainty corresponding to STEP 1 of risk analysis (namely, system descrip-
tion and modeling) can be summarized as follows:

� models are always approximate and simplified representations of reality, which bears
a significant amount of uncertainty to the overall analysis: this type of uncertainty is
often referred to as model inadequacymodel inadequacy [Kennedy et O’Hagan 2001]. In order to reduce
this uncertainty, the analyst has to capture all the important features of the system (i.e.,
all the hierarchical, logical and functional relations linking the physical elements of the
system at any level of detail) such that the quality of the analysis is not jeopardized.

� the successful performance of steps i. – iii. of § 4.1.1 relies on the competence and
subjective judgment of the analyst;

� the quantity and quality of the data employed in the calibration phase of step iii. of § 4.1.1
can be low, due to:

• scarce availability, because of the possibly scarce operating experience of the
system over a wide range of conditions encountered during operation4;

• imprecision of the data/information available on the system;

• measurement errors.

4.2 STEP 2 Hazard identification

The second step into the analysis of the risk of a given system is that of identifying the hazards
associated to its operation.

DEFINITION

Hazard

A hazard is any real or potential condition that may result in injury, illness, death to personnel,
damage to the environment, business interruption or loss of assets. Therefore, hazards are not
necessarily events, but are threats to safety, assets and production that if triggered by specific
initiator events have negative effects on the exposed system, but if opportunely managed do not
lead to any accident.

The aim is then that of identifying effective methods for assisting engineers in coping with
the hazards, i.e. in identifying, classifying, eliminating and/or controlling them [Zio 2007].

The methods developed for performing the hazard identification task consist, in general,
in a qualitative analysis of the system and its functions, within a systematic framework
of procedures. The methods strongly rely on the expertise of the designers, analysts and
personnel who have designed, operated and maintained the system [Henley et Kumamoto 1992].

The main features and steps characterizing the hazard identification procedure are described
in § 4.2.1, whereas the corresponding sources of uncertainty are summarized in § 4.2.2.

4 This is particularly relevant for systems employing new technologies.
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4.2.1 Description

The hazard identification procedure consists of three basic steps [USDoD 1980, 1993; ECSS 1999,
2003], described in further detail below:

1. preliminary historical analysis of past accidents which occurred in systems similar to
that of interest;

2. functional analysis aimed at highlighting those functions performed by the system at
hand that are relevant to the risk assessment task;

3. hazard identification using HAZard IDentification (HAZID) techniques.

Historical analysis

Historical analysis is aimed at a preliminary identification of the safety problems related to a
given typology of system, on the basis of past accidents happened to similar systems. This
research is carried out by resorting to the available literature specialized in the field and to
databases recording accident events of interest [USDoD 1993; NPRD 1995].

This analysis is used to provide a preliminary, rough indication of the most important and
critical components and functions of the system under analysis in order to drive the subsequent
steps of functional analysis and hazard identification.

Functional analysis

The main functions performed by the system are first identified; then, each main function is
decomposed in the elementary functions necessary to perform the main one, according to a
hierarchical tree structure. In other words, a breakdown of the system functions is provided
through different hierarchical levels of detail, i.e., functions at level n are decomposed into
functions at level n + 1. Further details can be found in [ECSS 1999].

An example of this approach is reported in Table 4.1 with reference to a system for the
compression and storage of hydrogen [Carpiognano et al. 2007].

Level Function

1. Hydrogen production

1.1 Water demineralization

1.1.1 Storage of demineralized water

…

1.2 Hydrogen generation

1.3 Hydrogen purification

… …

2. Hydrogen compression

… …

Table 4.1 – Example of functional analysis based on a hierarchical tree structure, with reference to a system
for the compression and storage of hydrogen [Carpiognano et al. 2007]
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Hazard identification using HAZID techniques

HAZID is a qualitative, structured and iterative methodology which combines deductive
aspects (search for causes) and inductive aspects (consequence analysis) with the objective of
identifying hazards in the functioning of a given system (and, as a final outcome, the initiating
events of undesired accident sequences). HAZID looks at the functions which are performed in
the system: indeed, the method proceeds through the compilation of tables (such as table 4.2)
which highlight possible functional anomalies and their associated causes and consequences
[USNRC 1983; USDoD 1993; ECSS 2003; Zio 2007].

In extreme synthesis, HAZID comprises the following steps [Henley et Kumamoto 1992]:

1. consider the elementary functions emerged from the functional analysis described in the
previous § 4.2.1 (i.e., those at the “lower” levels of the hierarchical tree) and decompose
the system into functionally independent units (reaction unit, storage unit, pumping unit,
etc.);

2. for each elementary function (and corresponding functionally independent unit) consid-
ered in STEP 1 above, identify the potential deviations from nominal behavior. In order
to do so, it is necessary to:

� specify all the unit incoming and outgoing fluxes (energy, mass, control signals, etc.) and
the characteristic (corresponding) process variables (temperature, flow rate, pressure,
concentration, etc.);

� apply guide words such as “low”, “high”, “no”, “more”, “less”, “reverse” to the previ-
ously identified process variables and unit functions, so as to generate deviations
from the nominal process regime (“high gas temperature”, “more gas flow”, “no control
signal”, “low gas pressure”, “reverse mass flow”, …);

3. for each functional deviation identified at STEP 2 above, qualitatively identify its possible
causes, consequences and the associated hazard (for instance, “more gas flow” may be due to
a valve jammed open or to a pump trip and may cause overpressure in a storage tank);

4. for each functional deviation identified at STEP 2 above and the corresponding causes and
consequences identified at STEP 3 above, provide a qualitative estimate of the associated
Frequencies (F), Damages (D) and Risk (R): these qualitative estimates reflect the analysts’
and operators’ experience, knowledge and lessons learnt. An example of the qualitative
classification of Frequencies (F) and Damages (D) for a given functional deviation of
interest is reported in Table 4.2.

Further details about the HAZID technique are reported in Appendix A.

Function Deviation Causes Consequences Hazard F D R Recommendations

Table 4.2 – Example of HAZID table

4.2.2 Sources of uncertainty

The sources of uncertainty associated with STEP 2 of risk analysis (namely, hazard identifica-
tion) are related to the possibly incomplete identification of the hazards due to:

� historical analysis performed using databases that are not reliable, not updated or not
specific to the typology of system of interest;

� not rigorous and systematic use of HAZID techniques, e.g. due to:

• application limited only to portions of the system;

• coarse level of detail adopted;

• incomplete analysis of all the operative functional phases;

• superficial treatment of human and software errors;
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Frequency

F Qualitative estimate Description

1 Extremely unlikely Not expected during the system lifetime

2 Remote It should not happen during the system lifetime

3 Not likely Expected at most once during the system lifetime

4 Likely Expected few times during the system lifetime

5 Occasional Expected many times during the system lifetime

Damage

D Qualitative estimate Description

1 Safe No relevant damage to humans, safety functions available

2 Marginal
Partial damage to humans and/or partial loss of the safety func-
tions

3 Severe
Serious damage to humans and/or complete loss of the safety
functions

4 Critical
Deaths among the plant operators and/or complete loss of the
safety functions

5 Catastrophic
High number of deaths, even among the population, and de-
struction of the system

Table 4.3 – Qualitative classifications of Frequencies (F) and Damages (D) for hazards identified through
the HAZID technique

• incomplete evaluation of external events (earthquakes, tornadoes, etc.) that may act as
initiators of accident sequences;

� imprecise definition of the qualitative classes of frequency and damage (cf. table 4.3 for
an example);

� imprecise (or even wrong) assignment of the identified functional deviations to the
corresponding qualitative classes of frequency and damage.

4.3 STEP 3 Selection of Initiating Events (IEs)

After the hazards are identified, the corresponding Initiating Events (IEs) (i.e., events that
unleash the potential inherent cause of the hazard and, either directly or indirectly, result in
damage to the system, the plant operators, the environment or in a loss of production) are
selected. Thus, the output of this task consists of a list of the IEs (component failures and defects,
process deviations, external events, operator errors, etc.) which have a probability of occurrence
not equal to zero and which can give rise to significant consequences. Experts’ experience,
lessons learnt and collection of failure data are again the knowledge sources that feed this
part of the study. Notice that a hazard could be triggered by different initiator events leading
to identical or different consequences.

The identification of the accident initiators is obviously a key aspect of the overall safety
analysis and great care must be put into its completeness since those accident events not
included at this stage are very unlikely to enter in the analysis at a later stage [USNRC 1983;
NASA 2002; ECSS 2003].

The main features of this step of the risk assessment procedure are described in brief in § 4.3.1,
whereas the corresponding sources of uncertainty are summarized in § 4.3.2.
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5
4
3
2
1

D
F 1 2 3 4 5

Unacceptable: more detailed investigations and changes to the system
design and/or management are recommended
ALARP (As Low As Reasonably Practicable) or almost acceptable:
changes to the system design and/or management are suggested
Acceptable: the current system design guarantees an adequate control of
risk

Figure 4.1 – Exemplary qualitative Risk Matrix for the identification of Initiating Events (IEs)

4.3.1 Description

The following steps have to be undertaken [USNRC 1983; NASA 2002; ECSS 2003]:

i. for each hazard resulting from STEP 2 (§ 4.2), identify the corresponding Initiating Events
(IEs) (i.e., those events that unleash the potential inherent cause of the hazard and result
in damage for the system, the population or the environment): IEs should be hunted out
among the possible failures and defects of components, software errors, human errors,
etc.;

ii. classify the criticality of the events identified in STEP 1 above on the basis of the associ-
ated level of risk by resorting to a qualitative Risk Matrix. In particular, the level of risk
associated to an event can be classified as “acceptable” (i.e., the current system design
guarantees an adequate control of risk), “almost acceptable” or “As Low As Reasonably
Practicable” (ALARP) (i.e., changes to the system design and/or management are sug-
gested) and “unacceptable” (i.e., more detailed investigations and changes to the system
design and/or management are recommended). An exemplary qualitative Risk Matrix is
shown in figure 4.1;

iii. on the basis of the classification performed at step ii. above, select the most critical
events;

iv. among the most critical events, select those that have the potential for becoming initiators
of accident sequences (i.e., Initiating Events-IEs);

v. group similar IEs (i.e., those requiring the intervention of the same safety functions, involv-
ing the same area of the system, leading to similar accident evolutions and consequences,
…) into homogeneous classes;

vi. for each class, select one reference IE representative of all the IEs belonging to the same
class.

4.3.2 Sources of uncertainty

The sources of uncertainties corresponding to STEP 3 of risk analysis (namely, selection of
the initiating events) can be summarized as follows:

� the successful performance of steps i. – vi. of § 4.3.1 relies on the competence, experience
and subjective judgment of the analyst;

� some of the IEs may have been erroneously left out in STEP 1 ;

� the grouping of the IEs performed at step v. of § 4.3.1 may be rough and approximate.
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4.4 STEP 4 Quantitative analysis of the accident sequences

The analysis of the accident sequences (or scenarios) represents the quantitative phase of risk
assessment. In synthesis, the accident sequences deriving from each of the Initiating Events
(IEs) identified in the previous STEP 3 of the procedure (§ 4.3) are determined; then, the prob-
ability (or frequencies) of occurrence of such sequences and the corresponding consequences
(i.e., the associated damage) are quantified.

A few details about the methods employed for the quantitative analysis of the accident
sequences are reported in § 4.4.1, whereas the corresponding sources of uncertainty are
summarized in § 4.4.2.

4.4.1 Description

The quantitative analysis of accident sequences is usually performed by resorting to the Event
Tree (ET) methodology.

DEFINITION

Event tree method

Event trees are inductive logic methods for identifying the various accident sequences which can
result from a single Initiating Event (IE). The approach is based on the discretization of the real
accident evolution in few macroscopic events.

Once an initiating event is defined, the events delineating the accident sequences must be defined
and organized according to the time and logic of occurrence. The events delineating the accident
sequences are usually characterized in terms of: i) the intervention (or not) of protection systems
which are supposed to take action for the mitigation of the accident; ii) the fulfillment (or not) of
safety functions; iii) the occurrence or not of physical phenomena. These events are structured in
the form of headings in the event tree. For each event, the set of possible states (success or failure of
safety systems, occurrence or not of phenomenological events, …) must be defined and enumerated:
each state gives rise to a branching of the tree.

Event tree concerning rupture of a pipe in a hydrogen storage facility

In figure 4.2, if the IE is the rupture of a pipe with release of gas in a plant for the compression and
storage of hydrogen, the first function required would be that of blocking the released flow rate
(event E1), followed by the possible ignition of hydrogen (event E2) and finally the quenching of
the fire (event E3). By way of example, referring to figure 4.3, sequence S2 = IE, E1, E2 denotes the
accident scenario in which the initiating event IE occurs, the blocking safety system is called upon
and does not succeed (E1) and hydrogen ignition does not occur (E2).

DEFINITION

Fault tree analysis

Fault tree analysis is a systematic, deductive technique which allows to develop the causal relations
leading to a given undesired event. It is deductive in the sense that it starts from a defined system
failure event and unfolds backward its causes down to the primary (basic) independent faults, also
called Basic Events (BEs). The method focuses on a single system failure mode and can provide
qualitative information on how a particular event can occur and what consequences it leads to,
while at the same time allowing the identification of those components which play a major role in
determining the defined system failure. Moreover, it can be solved in quantitative terms to provide
the probability of events of interest starting from knowledge of the probability of occurrence of the
Basic Events (BEs) which cause them.

The interested reader can find further details concerning fault tree analysis in Appendix B at the
end of this document.

The accident sequences which derive are then quantified in terms of their probability (or
frequency) of occurrence. This requires the determination of the probability (or frequency) of
occurrence of the IE and of the conditional probabilities of occurrence of the events composing
the sequence. Each event (branch) in the tree can be interpreted as the top event top eventof a fault
tree which allows the evaluation of the probability of the occurrence of such event. The value
thus computed represents the conditional probability of the occurrence of the event, given
that the events which precede on that sequence have occurred.
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Fault tree used to estimate the probability of an event in the fault tree above

Figure 4.3 shows the schematics of the event tree of figure 4.2 with an exemplary fault tree used
to evaluate the probability p(E1|IE) of event E1 conditional on the occurrence of the Initiating
Event (IE). Notice that probability (E1|IE) is computed as a function of the probabilities p(BE1),
p(BE2) and p(BE3) of the Basic Events BE1, BE2 and BE3 which cause E1: in particular, p(E1|IE) =
1 − (1 − p(BE1) · p(BE2) · (1 − p(BE3))). The multiplication of the conditional probabilities (or
frequencies) for each branch in the sequence gives the probability (or frequency) of that sequence.
For example, still referring to figure 4.3, the probability p(S4) of sequence S4 = IE, E1, E2, E3 is given
by

p(S4) = p(IE) · p(E1|IE) · p(E2|E1) · p(E3|E2)

Finally, the estimation of the consequences xSi , i ∈ {1, 2,…}, of each accident sequence
requires the simulation of the physical phenomena included in the event tree branches (gas
release, dispersion, ignition, fire propagation, natural circulation of fluids, heat radiation and so on) by
means of properly built mathematical models that are usually translated into deterministic
computer codes.

Further details about event tree and fault tree techniques are not reported here for brevity; the
interested reader is referred to [Zio 2007] and references therein and to Appendices B and C,
respectively, at the end of the report.

p(IE)

pipe rupture

p(E1|IE)

Not available
(release)

p(E1|IE)

Available

p(E2|E1)

Yes

p(E2|E1)

No (dispersion)

p(E3|E1, E2)

Not available
(fire)

p(E3|E1, E2)

Available

S4 = IE,E1, E2, E3{
S4, p(S4), xS4

}

S3 = IE,E1, E2, E3{
S3, p(S3), xS3

}
S2 = IE,E1, E2{
S2, p(S2), xS2

}
S1 = IE,E1{
S1, p(S1), xS1

}
IE

Blocking system
E1

Ignition
E2

Fire quench
E3

Figure 4.2 – Example of event tree in which the Initiating Event (IE) is a pipe rupture in a hydrogen
compression and storage system

4.4.2 Sources of uncertainty

Uncertainty corresponding to STEP 4 of risk assessment (namely, quantitative analysis of the
accident sequences) typically affects:

� the values of the conditional probabilities of occurrence of the events composing the
accident scenarios;

� the modeling of the accident scenarios by means of traditional event tree and fault
tree methodologies;

� the consequences of the accident scenarios (i.e., in practice, the mathematical models
and the computer codes simulating the phenomenological events included in the accident
scenarios).
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p(IE)

pipe rupture

p(E1|IE)

Not available
(release)

p(E1|IE)

Available
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No (dispersion)

p(E3|E1, E2)

Not available
(fire)
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p(S4) = p(IE) · p(E1|IE) · p(E2|E1) · p(E3|E2)

p(S3) = p(IE) · p(E1|IE) · p(E2|E1) · p(E3|E2)

p(S2) = p(IE) · p(E1|IE)

p(S1) = p(IE) · p(E1|IE)

IE
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E3
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Figure 4.3 – Schematics of the event tree shown in figure 4.2 with an exemplary fault tree used to evaluate
the probability p(E1|IE) of event E1 conditional on the occurrence of the Initiating Event.

Uncertainties affecting the probabilities of the events included in the accident scenarios

Epistemic uncertainties typically affect the values of the probabilities and frequencies of the
events included in the accident scenarios of interest: for example, failure and repair rates of
mechanical components, probabilities of failure on demand of safety systems, probabilities of human
errors, probabilities and frequencies of phenomenological and external events are typically affected
by epistemic uncertainty due to lack of knowledge and/or data on the physical phenomena
involved and/or to limited or (possibly) null operating experience of the corresponding com-
ponent or system over the wide range of conditions encountered during operation5; then, the
uncertainties in the probabilities of the branching events obviously propagate onto the proba-
bilities of the accident scenarios. By way of example, referring to figures 4.2 and 4.3 of § 4.2.1,
the values of probabilities p(IE), p(E1|IE), p(E3|E2), p(BE1), p(BE3), etc., and consequently
p(S1), p(S2), …, p(S4) are typically affected by epistemic uncertainty.

However, it is useful to consider different practical cases that may be encountered in the tasks
of estimating the probability of events included in the accident scenarios and representing the
corresponding epistemic uncertainty:

� in case of events dominated by hardware failures (i.e., failures of mechanical components),
a sufficient amount of (failure) data is usually available to the analysts for statistical
manipulation and estimation; this quantitative information is then frequently combined
with expert judgment to build probability distributions, within a subjective view of
probability [Huanga et al. 2001; Baraldi et Zio 2008];

� in case of events dominated by human failures, the analyst may not have sufficiently
refined knowledge or opinion to characterize the associated relevant epistemic uncertainty
in terms of probability distributions because i) the amount of (failure) data is limited or
even null, ii) the collection and treatment of (failure) data is difficult or even impossible
and/or iii) the available information/data is often of qualitative nature (i.e., it is expressed
in terms of fuzzy linguistic rules) [Huanga et al. 2001; Baraldi et Zio 2008]. In such cases,
theories alternative to the probabilistic one (e.g., fuzzy, evidence or possibility theories)
have to be sought to represent the corresponding epistemic uncertainty [Zadeh 1965;
Dempster 1967; Shafer 1976; Dubois et Prade 1988; Dubois 2006];

5 This issue is particularly relevant for systems employing new technologies.
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� in case of phenomenological events (gas release, dispersion, ignition, fire propagation, natural
circulation of fluids, …) and external events (earthquakes, floods, etc.), epistemic uncertainty
is due to lack of knowledge on the physical phenomena involved and to scarce or null
experience over a wide range of operative conditions (e.g., because they are difficult to
reproduce and study through laboratory experiments). In such cases, an estimate of the
probability of the phenomenological event is usually obtained by simulating the physical
phenomena of interest by means of a mathematical model translated into a — often,
rather complex — computer code [Fong et al. 2009].

Uncertainty of heat transfer coefficients

The epistemic uncertainty associated to the values of the heat transfer coefficients for fluids
in natural convection is much larger than in forced convection: thus, evaluating the failure
probability of a safety system relying on naturally circulating water (e.g., a passive decay heat
removal system in a nuclear reactor) is more difficult than estimating the failure probability of
a safety system based on mechanical pumps [Burgazzi 2007].

Uncertainties affecting the modeling of the accident scenarios

The modeling of the accident scenarios and of the system behavior introduces an additional
source of epistemic uncertainty into the analysis because it typically requires a simplification
and approximation of reality. Thus, uncertainty is typically related to:

� the capability of the available modeling techniques to provide an effective and realistic
representation of the behavior of the system during an accidental transient. For example,
whereas event tree and fault tree methodologies typically undertake the classical binary
success/failure logic, the performance of real systems may settle on different levels
depending on the operative conditions and on the degradation state of the constitutive
multi-state components [Zio et Podofillini 2003]. In addition, event tree and fault tree
techniques are essentially static and cannot take into account time-dependent physical
evolutions typical of real systems [Siu 1994];

� the heavily approximate nature of the models describing human behavior: in particular,
the difficult and incomplete identification of the possible factors influencing human
performance and of the corresponding interactions and effects, the unavoidable variability
of the behavior of different individuals in the same situations and the difficult description
and modeling of interactions/relationships in work teams [Chang et Mosleh 2007];

� the lack of well-founded models to describe the (failure) behavior of software and digital
instrumentation and control systems [Zhu et al. 2007].

Uncertainties affecting the consequences of the accident scenarios

The estimation of the consequences of each accidental scenario requires the simulation of the
physical phenomena included in the event tree branches (e.g., gas release, dispersion, ignition,
fire propagation, natural circulation of fluids, heat radiation and so on) by means of properly built
mathematical models that are usually translated into deterministic computer codes. Thus,
the uncertainties associated to the consequences of the accident scenarios are related to those
affecting the simulation of the phenomenological events included in the event tree branches
and the corresponding mathematical models and computer codes.

The classification provided here is by no means complete or even unique, but is intended only
to illustrate some of the dominant sources of uncertainty in simulation models. Excepting
some changes in terminology, the following classification scheme that we have adopted is
consistent with that provided by [Kennedy et O’Hagan 2001]:

� Aleatory parametric uncertainty: Because models are idealizations of some real phe-
nomena, they frequently allow for greater control over the input parameter values than
can actually be realized. However, it may not be possible to specify, or control, the values
of some of these inputs in the real system. Moreover, the system may interact with
its environment in a complicated and dynamic manner so that some of the inputs are
effectively random. The distinguishing feature of these parameters is that their values
could conceivably change each time the code is run. For instance, if the computational
model must repeatedly call a subroutine that contains an aleatory variable, a new value
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must be randomly selected from its distribution for each call to this subroutine. Con-
sequently, repeated runs of the code under identical input configurations will lead to
different outputs, and the output of the code will be a random variable [Langewisch 2010].

Random loads on a structure

Typical examples of aleatory parametric uncertainty are represented by the random variation
of the geometrical dimensions and material properties of a simulated component or system
(due to differences between the as-built system and its design upon which the analysis is
based) or by the random loads and resistances of structures in structural reliability simulation
codes.

� Epistemic parametric uncertainty: Not all the inputs to the model will be random in
the sense described above. Nevertheless, when attempting to simulate some phenomena,
it is necessary to specify these remaining parameters in a manner that is consistent with
the actual system being simulated. In practice, however, the appropriate values of many
of these parameters may not be precisely known due to a lack of data concerning the
phenomena under consideration. As described previously, this type of uncertainty is
one instance of epistemic uncertainty. More specifically, we refer to this uncertainty
as epistemic parametric uncertainty. Epistemic parametric uncertainty is distinguished
from aleatory parametric variability in that, in the case of the former, the input parameter
takes some fixed, albeit unknown, value. Thus, the value does not change each time the
model is run.

Power level of a nuclear reactor

Typical examples of epistemic parametric uncertainty are represented by the parameters used
to describe the system (e.g., power level, pressure, temperature, material conductivity, mass
flow rate, …), e.g. owing to errors in their measurement or insufficient data and information. For
example, according to industry practice and experience, an error of 2% is usually considered
in the determination of the power level in a nuclear reactor, due to uncertainties in the
measurements. As a consequence, the power level is usually known only to a certain level of
precision, i.e., epistemic parametric uncertainty is associated with it [Pagani et al. 2005].

� Epistemic model uncertainty (or model inadequacy): this form of uncertainty arises
because mathematical models are simplified representations of real systems and, there-
fore, their results may be affected by error or bias. Model uncertainty (or inadequacy)
also includes the fact that the model could be too simplified and therefore would neglect
some important phenomena affecting the final result: this latter type of uncertainty is
sometimes identified independently from model uncertainty and is known as complete-
ness uncertainty [USNRC 2009]. In practice, even if there was no (aleatory or epistemic)
parameter uncertainty (so that we knew the true values of the parameters and variables
required to make a particular estimate of the state of the system being modeled), the
estimated value would not equal the true value of the system state: this discrepancy is
due to model inadequacy.

Model uncertainty

Model uncertainty (or inadequacy) may for example involve the correlations adopted to
describe Thermal-Hydraulic (T-H) phenomena, which are subject to errors of approximation.
Such uncertainties may for example be captured by multiplicative (z = c(x) · ε) or additive
models (z = c(x) + ε) [Zio et Apostolakis 1996], where z is the real value of the quantity to
be predicted (e.g. heat transfer coefficients, friction factors, Nusselt numbers or thermal
conductivity coefficients), c(•) is the mathematical model of the correlation (i.e., the result
of the correlation as computed by the T-H code), x is the vector of correlating variables and
ε is the associated multiplicative or additive error factor: as a result, the uncertainty in the
quantity z to be predicted is translated into an uncertainty in the multiplicative or additive
error factor ε. This error is commonly classified as representing model uncertainty.

As a final remark, notice that the simulation of complex accident sequences requires
the concatenation of several simulation models, each one introducing an amount of
uncertainty in the analysis; thus, long and complex accident sequences may produce an
“explosion” of the associated uncertainty.
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4.5 STEP 5 Risk evaluation and decision-making process

The main features of the last step of the risk assessment procedure (namely, risk evaluation
and decision-making process) are described in § 4.5.1, whereas the corresponding sources of
uncertainty are summarized in § 4.5.2.

4.5.1 Description

The conclusive phase of risk analysis consists of the evaluation of the risk associated to
the accident scenarios identified and quantified in the previous step (§ 4.4). In practice, the
risk associated to the accident scenarios is usually classified as “acceptable” (i.e., the current
system design guarantees an adequate control of risk), “almost acceptable” or “As Low As
Reasonably Practicable” (ALARP) (i.e., changes to the system design and/or management are
suggested) and “unacceptable” (i.e., more detailed investigations and changes to the system
design and/or management are recommended).

A possible approach for classifying the accident scenarios Si , i ∈ {1, 2,…}, is represented
graphically in figure 4.4, where the probabilities p(Si), i ∈ {1, 2,…} of the scenarios are
plotted against their consequences xSi , i ∈ {1, 2,…}6. Then, each scenario is represented in
the diagram as a point: for example, referring to figure 4.4, scenario S1 would be classified as
“unacceptable”, scenario S2 as “ALARP” and scenario S3 as “acceptable”.

On the basis of this classification and visual representation, the decision maker first identifies
the most effective strategy to reduce risk (e.g., prevention, i.e. reduction of the probability
of the accident, or mitigation, i.e. reduction of the consequences of the accident); then, a
detailed risk-informed analysis of the system leads to the choice of the practical design and/or
management modifications to prevent and/or mitigate the accident.

Figure 4.4 – Possible criteria for risk classification: scenario S1 is “unacceptable”, scenario S2 is “ALARP”
and scenario S3 is “acceptable”. The horizontal axis is the consequence of scenarios, on a
logarithmic scale. The vertical axis is the probability of the scenarios, on a log scale.

6 Consequences could be expressed for instance in terms of number of fatalities

22



4.5. Risk evaluation and decision-making process

4.5.2 Sources of uncertainty

This phase of risk quantification and evaluation is affected by all the types of uncertainties
introduced in the previous phases of the analysis, which therefore impact the outputs of the
risk assessment procedure.

From the modeling and methodological viewpoint, the phase of risk estimation and evalua-
tion is affected by the lack of well-sounded and rigorous criteria for the evaluation of risk acceptabilityrisk
acceptability. Indeed, risk estimation is known to be affected by a number of factors:

� heuristics used by people when dealing with complex, probabilistic problems (also known
as cognitive biases) which affect risk perception [Kahneman et al. 1982]), such as:

• the availability heuristic (the probability of an event is estimated by the ease with
which examples of the event come to mind), which studies have for instance shown
leads to underestimation of the frequency of common causes of death [Lichtenstein
et al. 1978];

• anchoring and adjustment effects, which lead people to place too much impor-
tance on the first information one obtained on a subject (the “anchor”), operating
by incremental adjustments with respect to that anchor instead of weighting new
evidence in the same way as the initial estimate;

• overconfidence or optimism bias, which is a tendency for people to be overly
optimistic about the outcome of planned actions (including overestimating the
probability of positive events and underestimating that of negative events) [Oskamp
1965];

• illusion of control, the tendency for people to overestimate their ability to control
events [Langer 1975].

� heuristics used in individual decision-making under risk and uncertainty, such as irra-
tional escalation7, loss aversion, and endowment effects8;

� group decision biases, such as conformity and group polarization (the tendency for
people in group situations to form opinions and reach decisions which are more extreme,
or more risky, than when they decide alone), groupthink [Janis 1982] and possibly cyclic
preferences in group decisions9.

Beyond the objective level of risk generated by a project, a number of aspects are known to
influence people’s judgment as to the acceptability of an activity (cf. for instance [Sandman
1989]):

� is the origin of the risk natural or industrial/technological?

� is the nature of the hazard familiar to people, or unfamiliar?

� are the possible effects memorable or easily forgotten, dreaded or not?

� is the hazard of a catastrophic or a chronic nature?

� is exposure to the risk perceived to be fair, or unfair (issues related to equity)?

� is the activity perceived to be morally relevant?

� are sources of information concerning the risk and the activity perceived to be trustwor-
thy?

� is the governance of the industrial activity and the risk management process perceived
to be open and responsive?

7 Irrational escalation, also known as the sunk cost fallacy, is a phenomenon where people justify maintaining a
decision by prior investment, despite new evidence suggesting that the cost, starting today, of continuing the
decision outweighs the expected benefit.

8 The endowment effect, also known as status quo bias, is the observation that people often demand much more to
give up an object than they would be willing to pay to acquire it.

9 Condorcet’s voting paradox, a situation noted by the Marquis de Condorcet in the 18th century, is a situation where
collective preferences can be cyclic, even if the preferences of individual voters are not. This shows that majority
voting in a group of people may fail to yield a stable outcome. The paradox was generalized by the economist
Arrow, leading to Arrow’s impossibility theorem [Arrow 1950], proving the absence of a social choice rule that
respects a number of plausible requirements.
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Finally, this operation is strongly influenced by the social, economic and cultural context of
a given country: thus, the level of risk acceptability associated to the operation of the same
typology of system (e.g., nuclear, chemical, …) will be different in different countries. An
example of this variability is shown in figure 4.5, concerning a system for the compression
and storage of hydrogen.

Figure 4.5 – Different criteria for classification of risk in different countries, with reference to a system for
the compression and storage of hydrogen
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A

The HAZID technique

A.1 Definitions

Hazard analysis is defined as a systematic and iterative process of the identification, classi-
fication and reduction of hazards10. Hazard Identification (hazid) is aimed at assessing all
hazards that could directly and indirectly affect the safe – correct operation of the plant –
system.

A.2 Main concepts

Figures A.1 and A.2 sketch the concepts which hazid is based on: hazards reveal themselves
through hazard manifestations and are activated if initiating events occur (the combination
of a hazard and an initiating event is a mishap, i.e., an unplanned event or series of events
resulting in death, injury, occupational illness, or damage to or loss of equipment or property,
or damage to the environment). The causes of the events that activate hazards, the sequence
of the events that may occur in consequence of this activation and their effects define the
Hazard Scenario (figure A.2). Notice that different hazard scenarios can originate from the
same hazard and different hazard scenarios can lead to the same consequence (dashed arrows
in figure A.2). The impact that the final effects have on properties and safety is evaluated and
the probability of occurrence of these effects provide the basis for making the final decision
about the risk acceptability.

A hazid study is carried out by a team of competent engineers from a mixture of disciplines,
led by an analyst who is experienced in the hazid technique. Each area, or zone, of the
installation is considered against a checklist of hazards. Where it is agreed that a hazard
exists in a particular area, the risk presented by the hazard is considered, and all possible
means of either eliminating the hazard or controlling the risk and/or the necessity for further
study are noted on a HAZID worksheet. Actions are assigned to either discipline groups or
individuals to ensure the mitigating control, or further study is completed.

A.3 Essentials

A.3.1 HAZID Objectives

� Identify hazards to host facilities due to design, and evaluate potential consequences
should the hazards be realized;

� Establish safeguards to manage hazards; identify areas where further understanding of
safeguard effectiveness is needed;

� Make recommendations to reduce the likelihood of hazard occurrence or mitigate the
potential consequences.

The hazid method, accepted as one of the best techniques for identifying potential hazards
and operability problems, involves the following:

10 A hazard is any real or potential condition that can cause injury, illness, or death to personnel; damage to or loss
of a system, equipment or property; or damage to the environment. Notice that hazards are not events, but the
prerequisite for the occurrence of hazard scenarios with their negative effects on safety and properties.
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Figure A.1 – Concepts underlying HAZID

Figure A.2 – Hazards and hazard scenarios
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A.3. Essentials

� Assembly of a team of experienced project personnel;

� Presentations detailing the scope of the hazid;
� Identify hazards, causes, consequences and safeguards. Notice that the main “sources”

used for this task are:

• analysis of similar systems;

• preliminary Hazard Lists (provided by reference standards);

• expert knowledge;

• lessons learnt;

• analysis of environmental constraints, including the operating environment (drop,
shock, vibration, extreme temperature, noise, confined space, fire, electrostatic discharge,
lightning, etc.);

• analysis of operating test, maintenance, and emergency procedures.

� Make recommendations to address hazards, as appropriate;

� Risk ranking of hazardous events.

A.3.2 Key Benefits to Client

� Existing design knowledge is efficiently captured relative to client’s projects;

� Numerous procedural, equipment design, testing, and process control recommendations
allow expedited development of standardized equipment.

Is it possible?
Is it likely?

Hazard

Select plant zone/system node
Select category, discuss and agree intent

Guide Word

explosive gas

work at height

release of 
hydrogen to the 
atmosphere

threats & causes

Brainstorm

What barriers or controls are required to
prevent or control the effect?

gas detector coupled
with nitrogen quench

Identify

Assess

Figure A.3 – The HAZID process (cf. § 4.2.1 for definitions)
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A.3.3 Process steps

1. Define the purpose, objectives, and scope of the study;

2. Select the team;

3. Prepare for the study;

4. Carry out the team review;

5. Record the results.
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B

Fault-tree analysis

B.1 Introduction

For complex multi-component systems, for example such as those employed in the nuclear,
chemical, process and aerospace industries, it is important to analyze the possible mechanisms
of failure and to perform probabilistic analyses for the expected frequency of such failures.
Often, each such system is unique in the sense that there are no other identical systems (same
components interconnected in the same way and operating under the same conditions) for
which failure data have been collected: therefore a statistical failure analysis is not possible.
Furthermore, it is not only the probabilistic aspects of failure of the system which are of
interest but also the initiating causes and the combination of events which can lead to a
particular failure.

The engineering way to tackle a problem of this nature, where many events interact to produce
other events, is to relate these events using simple logical relationships (intersection, union,
etc.) and to methodically build a logical structure which represents the system.

In this respect, fault tree analysis is a systematic, deductive technique which allows to develop
the causal relations leading to a given undesired event. It is deductive in the sense that it starts
from a defined system failure event and unfolds backward its causes down to the primary
(basic) independent faults. The method focuses on a single system failure mode and can
provide qualitative information on how a particular event can occur and what consequences
it leads to, while at the same time allowing the identification of those components which
play a major role in determining the defined system failure. Moreover, it can be solved in
quantitative terms to provide the probability of events of interest starting from knowledge of
the probability of occurrence of the basic events which cause them.

In the following, we shall give only the basic principles of the technique. The interested reader
is invited to look at the specialized literature for further details, e.g. [Zio 2007] and references
therein from which the material herein contained has been taken.

B.2 Fault tree construction

A fault tree is a graphical representation of causal relations obtained when a system failure
mode is traced backward to search for its possible causes. To complete the construction of a
fault tree for a complex system, it is necessary to first understand how the system functions.
A system flow diagram (such as a reliability block diagram) is used for this purpose, e.g. to
depict the pathways by which materials are transmitted between components of the system.

The first step in fault tree construction is the selection of the system failure event of interest.
This is called the top event; every following event will be considered in relation to its effect
upon it.

The next step is to identify contributing events that may directly cause the top event to
occur. At least four possibilities exist [Henley et Kumamoto 1992]:

1. no input to the device;

2. primary failure of the device (under operation in the design envelope, random, due to
aging or fatigue);

3. human error in actuating or installing the device;
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4. secondary failure of the device (due to present or past stresses caused by neighboring
components or the environments: for instance common cause failure, excessive flow,
external causes such as earthquakes).

If these events are considered to be indeed contributing to the system fault, then they are
connected to the top event logically via an or function and graphically through the or gate
(cf. figure B.1).

no CB trip

O
R

CB failed

no trip signal fire damage

top event

possible common
mode failure event

random failure event

Figure B.1 – Top and first level of a fault tree for a circuit breaker (CB) failing to trip an electrical circuit,
after [GE 1974]

Once the first level of events directly contributing to the top has been established, each event
must be examined to decide whether it is to be further decomposed in more elementary events
contributing to its occurrence. At this stage, the questions to be answered are:

� is this event a primary failure?

� is it to be broken down further in more primary failure causes?

In the first case, the corresponding branch of the tree is terminated and this primary event is
symbolically represented by a circle. This also implies that the event is independent of the
other terminating events (circles) which will be eventually identified and that a numerical
value for the probability of its occurrence is available if a quantitative analysis of the tree is to
be performed.

On the contrary, if a first level contributing event is not identified as a primary failure, it must
be examined to identify the sub-events which contribute to its occurrence and their logical
relationships (cf. figure B.2).

no trip signal

A
N
D

relay A
closed

relay B
closed

Figure B.2 – AND function example for the circuit breaker of the electrical system with the top event of
Figure B.1, after [GE 1974]

The procedure of analyzing every event is continued until all branches have been terminated
in independent primary failures for which probability data are available. Sometimes, certain
events which would require further breakdown can be temporarily classified as primary at
the current state of the tree structure and assigned a probability by rule of thumb. These
underdeveloped events are graphically represented by a diamond symbol rather than by a
circle.

A fault tree can be described by a set of Boolean algebraic equations, one for each gate of the
tree. For each gate, the input events are the independent variables and the output event is the
dependent variable. Utilizing the rules of Boolean algebra it is then possible to solve these
equations so that the top event is expressed in terms of sets of primary events only.

Finally, the quantitative analysis of the fault tree consists of transforming its logical structure
into an equivalent probability form and numerically calculating the probability of occurrence
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of the top event from the probabilities of occurrence of the basic events. The probability of
the basic event is the failure probability of the component or subsystem during the mission
time of interest. The corresponding mathematical details can be found in [Zio 2007].
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C

Event tree analysis

Event trees are inductive logic methods for identifying the various accident sequences which
can originate from a single initiating event. The approach is based on the discretization of
the real accident evolution in a small number of macroscopic events. The accident sequences
derived are then quantified in terms of their probability of occurrence.

The events delineating the accident sequences are usually characterized in terms of:

1. the intervention (or not) of protection systems which are supposed to take action for the
mitigation of the accident (system event tree);

2. the fulfillment (or not) of safety functions (functional event tree);

3. the occurrence or not of physical phenomena (phenomenological event tree).

Typically, the functional event trees are an intermediate step to the construction of system
event trees: following the accident-initiating event, the safety functions which need to be
fulfilled are identified; these will later be substituted by the corresponding safety and protection
systems.

The system event trees are used to identify the accident sequences developing within the plant
and involving the protection and safety systems.

The phenomenological event trees describe the accident phenomenological evolution outside
the plant (fire, contaminant dispersion…).

In the following, we shall give only the basic principles of the technique. The interested reader
is invited to consult the specialized literature for further details, e.g. [Zio 2007] and references
therein from which most of the material herein has been taken.

C.1 Event tree construction

An event tree begins with a defined accident-initiating event which could be a component or
an external failure. It follows that there is one event tree for each different accident-initiating
event considered. This aspect obviously poses a limitation on the number of initiating events
which can be analyzed in details. For this reason, the analyst groups similar initiating events
and only one representative initiating event for each class is investigated in details. Initiating
events which are grouped in the same class are usually such to require the intervention of the
same safety functions and to lead to similar accident evolutions and consequences.

Once an initiating event is defined, all the safety functions that are required to mitigate the
accident must be defined and organized according to their time of intervention. For example
(cf. figure C.1) if the initiating event (IE) is the rupture of a pipe with release of flammable
liquid and the sparking of jet-fire, the first function required would be that of interception of
the released flow rate, followed by the cooling of adjacent tanks and finally the quenching of
the jet. These functions are structured in the form of headings in the functional event tree. For
each function, the set of possible success and failure states must be defined and enumerated.
Each state gives rise to a branching of the tree (cf. figure C.1). For example, in the typical
binary success/failure logic it is customary to associate to the top branch the success of the
function and to the bottom branch its failure.

Figure C.1 shows a graphical example of a system event tree: the initiating event is depicted
by the initial horizontal line and the system states are then connected in a stepwise, branching
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Pipe rupture
with release of
flammable liquid

IE
Flow interception

E1

Tank cooling
E2

Jet fire quench
E3

Figure C.1 – Example of functional event tree, after [Zio 2007]

fashion: system success and failure states have been denoted by S and F , respectively. The
accident sequences that result from the tree structure are shown in the last column. Each branch
yields one particular accident sequence; for example, IS1F2 denotes the accident sequence in
which the initiating event IE occurs, system 1 is called upon and succeeds (S1), and system 2 is
called upon but fails to perform its defined function (F2). For larger event trees, this stepwise
branching would simply be continued. Note that the system states on a given branch of the
event tree are conditional on the previous system states having occurred. With reference to
the previous example, the success and failure of system 1 must be defined under the condition
that the initiating event has occurred; likewise, in the upper branch of the tree corresponding
to system 1 success, the success and failure of system 2 must be defined under the conditions
that the initiating event has occurred and system 1 has succeeded.

Initiating event, I

Success state S1

Failure state F1

Success state S2

Failure state F2

Success state S2

Failure state F2

Initiating event System 1 System 2

IS1S2

IS1F2

IF1S2

IF1F2

Figure C.2 – Illustration of system event tree branching, after [USNRC 1975]

C.2 Event tree evaluation

Once the final event tree has been constructed, the final task is to compute the probabilities
of system failure. Each event (branch) in the tree can be interpreted as the top event of a
fault tree which allows the evaluation of the probability of the occurrence of such event. The
value thus computed represents the conditional probability of the occurrence of the event,
given that the events which precede on that sequence have occurred. Multiplication of the
conditional probabilities for each branch in a sequence gives the probability of that sequence
(cf. figure C.3).
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IE 1S 2S

)()()(; 11221 IPISPISSPSIS

)I(P)IS(P)ISF(P;FIS 11221

)I(P)IF(P)IFS(P;SIF 11221

)I(P)IF(P)IFF(P;FIF 11221

S1

S2

S2

Figure C.3 – Schematics of the event tree shown with the fault trees used to evaluate the probabilities of
different events
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