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Introduction

Context: uncertainty analysis in risk assessment

After having long been “swept under the carpet”, uncertainty in risk analysis is now the subject
of serious investigation, and is generally communicated to decision-makers and stakeholders
as one of the outcomes of the risk analysis process. Two main families of uncertainty are
considered: randomness due to inherent variability in the system behavior and imprecision
due to lack of knowledge and information on the system. The former type of uncertainty is
often referred to as objective, aleatory, stochastic whereas the latter is often referred to as
subjective, epistemic, state-of-knowledge [Apostolakis 1990; Helton and Oberkampf 2004].
In current risk assessment practice, both types of uncertainties are represented by means of
probability distributions. However, probabilistic representation of epistemic uncertainty
is inappropriate when sufficient data is not available for statistical analysis, even if one
adopts expert elicitation procedures to incorporate diffuse information into the corresponding
probability distributions, within a subjective view of probability. Indeed, an expert may
not have sufficiently refined knowledge or opinion to characterize the relevant epistemic
uncertainty in terms of probability distributions [Helton and Oberkampf 2004].
As a result of the potential limitations of a probabilistic representation of epistemic uncertainty
under limited information, a number of alternative representation frameworks have been
proposed [Aven 2010, 2011; Aven and Steen 2010; Aven and Zio 2011; Flage et al. 2009], including
fuzzy set theory [Klir and Yuan 1995], evidence theory [Ferson et al. 2003, 2004; Helton et al. 2007,
2008; Sentz and Ferson 2002], possibility theory [Baudrit and Dubois 2006; Baudrit et al. 2008; Dubois
2006; Dubois and Prade 1988b] and interval analysis [Ferson and Ginzburg 1996; Ferson and Hajagos
2004; Ferson and Tucker 2006; Ferson et al. 2007, 2010; Moore 1979]. A comparative analysis
of these different representation frameworks has been published in the same collection as
the present document [Zio and Pedroni 2013]. Possibility theory, in particular, may be the
most attractive one for risk assessment, because of its representation power and its relative
mathematical simplicity. It offers two measures of likelihood, namely possibility and necessity
measures, that may be interpreted as lower and upper probabilities in the representation of
imprecision in the experts’ probability assignments.

Objectives of this document

In the present document, we assume a risk analysis setting inwhich the analyst uses probability
distributions to describe aleatory uncertainty and a combination of probability and possibility
distributions to describe epistemic uncertainty. The objective is to investigate the effects that
different representations of epistemic uncertainty have on practical risk assessment problems
involving decisions.
Two different application problems are considered:

1. The estimation of component importance measures in the presence of epistemic
uncertainties [Baraldi et al. 2009b,a]. Importance measures are a technique used1 to rank
components or basic events in terms of their impact on system risk or reliability. During
risk analysis of systems where many parameters are uncertain, they allow analysts to
identify components whose impact on safety or reliability is significant, and focus effort
on finding high-quality data for their reliability. They also allow analysts to identify
“reliability bottlenecks”, and thus focus maintenance spending on components that have
a significant impact on system safety or reliability.

2. The propagation of uncertainties through a risk flooding model [Baraldi et al. 2012],
in order to determine the dike level which is necessary to ensure a given flood return
period, or the flood risk for a given dike level.

1 The use of importance measures in risk analysis and maintenance optimization has been developed primarily in
the nuclear power sector.
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In this document, we focus on appropriate treatment of epistemic uncertainty affecting the
parameters of the models that describe the components’ failures or associated basic events
(failure probabilities, failure rates, repair rates, unavailabilities), due to incomplete knowledge of
their values [Apostolakis 1990]. Such epistemic uncertainties are represented here using:

� probability distributions, when sufficient data is available for statistical analysis [Baraldi
et al. 2009b];

� possibility distributions, when the information available to define the parameters’
values comes from experts, in the form of imprecise quantitative statements or judgments
[Baraldi et al. 2009a].

Within this framework, the present work investigates

� how the epistemic (probabilistic or possibilistic) uncertainties in the model parameters
can influence importance measures;

� how they can be accounted for in the ranking of the basic events or components;

� how the uncertainties in input probabilities can be propagated through amodel to produce
output uncertainties that can be communicated to decision-makers.

Three case studies of increasing complexity are presented.

Document structure

The document is organized as follows:

� Chapter 1 starts with a reminder of basic concepts about probability and possibility
theories for epistemic uncertainty representation, then presents the methods used in the
document to compare the importance of components or basic events in the presence of
epistemic uncertainties. A technique developed by the authors for importance measure
assessment in systems with large numbers of components is presented. It is based on
the use of the Quicksort algorithm to avoid the combinatorial explosion of pairwise
comparisons.

� Chapter 2 presents a simple case study of importance measure assessment with an
pedagogical example involving a three-component system from the literature.

� Chapter 3 presents a case study of importance measure assessment for the auxiliary feed
water system of a nuclear pressurized water reactor.

� Chapter 4 presents an application in environmental modelling, with a study of uncertainty
propagation concerning the inputs of an hydraulic model for the risk-based design of a
flood protection dike. The output variable of interest is the maximal water level reached
by a river during the year.

Readers may be interested by three other documents by the same authors in the collection
of the Cahiers de la Sécurité Industrielle:

� Uncertainty characterization in risk analysis for decision-making practice (CSI-2012-07),
which provides an overview of sources of uncertainty which arise in each step of a
probabilistic risk analysis;

� Overview of risk-informed decision-making processes (CSI-2012-10), which illustrates
the way in which NASA and the US Nuclear Regulatory Commission implement
risk-informed decision-making.

� Literature review of methods for representing uncertainty (CSI-2013-03), which provides
an overview of probability theory, interval analysis and possibility theory and their
use for risk analysis.
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1

Methods used

1.1 Epistemic uncertainty representation

Twoways of representing the epistemic uncertainty affecting the parameters of risk models are
described in the following: in particular, in § 1.1.1 the probabilistic framework is briefly recalled;
in § 1.1.2 one of the non-probabilistic frameworks available in the literature, possibility theory,
is introduced.

1.1.1 Probability theory

Let Ω be the space containing all the values that a given epistemically-uncertain parameter Y
of interest can assume. In the discrete case, a discrete Probability Distribution Function (PDF)
dY (y): Ω → [0, 1] exists such that ∑

y∈Ω
dY (y) = 1; in the continuous case, a Probability Density

Function (PDF) pY (y) exists such that ∫
Ω
pY (y)dy = 1. For any measurable subset1 A of Ω, the

probability P(A) of A is

discrete case: P(A) = ∑
y∈A

dY (y) (1.1)

continuous case: P(A) = ∫
A
pY (y)dy (1.2)

The probability P(A) defined in equations (1.1) and (1.2) is required to have the following
basic properties [Helton and Oberkampf 2004]:

1. if A ∈ Ω, then 0 ≤ P(A) ≤ 1;

2. P(Ω) = 1;

3. if A1,A2,…,Ai ,…, is a sequence of disjoint sets from Ω, then P(⋃i Ai) = ∑i P(Ai);

4. P(A) = 1 − P( ̄A) (self-duality property): in words, the probability of a set A (i.e. P(A))
and the probability of its complement ̄A (i.e. P( ̄A)) must sum to one. Thus, specification
of the likelihood of a set in probability theory also results in, or implies, a specification
of the likelihood of its complement2.

Finally, notice that in the continuous case the Cumulative Distribution Function (CDF) of Y is
FY : Ω → [0, 1], defined from the PDF pY (y) as follows:

FY (y) = P((−∞, y]) = P(Y ≤ y) =
y
∫
−∞
pY (t) dt ,∀y ∈ Ω (1.3)

By way of example, let us assume that the epistemically-uncertain parameter Y is normal3,
e.g. Y ∼ N (5, 0.25): the corresponding PDF pY (y) and CDF FY (y) are shown in figure 1.1, left

1 Ameasure on a set is a systematic way to assign a number to each suitable subset of that set, intuitively interpreted
as its size.

2 This property is peculiar to probability theory: in general, less restrictive conditions on the specification of likelihood
are present in possibility theory (see § 1.1.2).

3 Follows a normal (or gaussian) distribution.
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Figure 1.1 – Probability density function, pY (y) (left) and cumulative distribution function FY (y) (right)
of the normal random variable Y ∼ N (5, 0.25)

and right, respectively. The probability that the epistemically-uncertain parameter Y is lower

than or equal to y1 = 5.2, i.e. P {Y ≤ y1 = 5.2} =
y1=5.2

∫
−∞

pY (y)dy = 0.8 is shown graphically in

figure 1.1 (left) as the shaded area included between the PDF pY (y) and the straight line y1 =
5.2. Notice that this probability is equal to the value of the CDF FY (y) in correspondence of
y1 = 5.2, i.e., FY (5.2) = 0.8 (figure 1.1, right).

1.1.2 Possibility theory

The rationale for using possibility (instead of probability) distributions to describe epistemic
uncertainty lies in the fact that a possibility distribution defines a family of probability dis-
tributions (bounded above and below by the so called possibility and necessity functions,
respectively), thus it allows to account the expert’s inability to specify a single probability
distribution [Baudrit and Dubois 2006; Baudrit et al. 2008; Dubois 2006; Dubois and Prade 1988a].
In possibility theory, uncertainty is represented by using a possibility function πY (y). For
each y in a set Ω, πY (y) expresses the degree of possibility of y . When πY (y) = 0 for some
y, it means that the outcome y is considered an impossible situation. When πY (y) = 1 for
some y , it means that the outcome y is totally possible, i.e., is just unsurprising, normal, usual
[Dubois 2006]. This is a much weaker statement than when probability is 1.
The possibility function πY (y) gives rise to probability bounds, upper and lower probabilities,
referred to as necessity and possibility measures (NY , ΠY ). The possibility of a set A, ΠY (A),
is defined by

ΠY (A) = sup
y∈A

{πY (y)} (1.4)

and the necessity measure NY (A) is defined by

NY (A) = 1 − ΠY (A) = 1 − sup
y∉A

{πY (y)} (1.5)

Let P(πY ) be a family of probability distributions such that for all sets A, NY (A) ≤ P(A) ≤
ΠY (A). Then,

NY (A) = inf P(A) (1.6)
ΠY (A) = sup P(A) (1.7)

where inf and sup are with respect to all probability measures in P. Hence the necessity
measure is interpreted as a lower level for the probability and the possibility measure is
interpreted as an upper limit. Referring to subjective probabilities, the bounds reflect the fact
that the analyst is not able or willing to precisely assign her probability, and the bounds are
the best she can do given the information available; in other words, she can only describe a
subset of P which contains her probability [Dubois and Prade 1988a].
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1.1. Epistemic uncertainty representation

A typical example of possibilistic representation is the following [Anoop and Rao 2008; Baraldi
and Zio 2008]. We consider an epistemically-uncertain parameter y; based on its definition we
know that the parameter can take values in the range [4, 6] and the most likely value is 5: to
represent this information a triangular possibility distribution on the interval [4, 6] is used,
with maximum value at 5, see figure 1.2.

Figure 1.2 – Possibility function for a parameter Y epistemically-uncertain on the interval [4,6], with
maximum value at 5

DEFINITION

α-cut sets

A fuzzy set is a collection of objects with various degrees of membership. It is sometimes useful to
focus on those elements that have at least some minimal degree of membership α. For every α ∈ [0,
1], a given fuzzy set A yields a crisp set Aα which contains those elements of the universe which
have membership of A at at least α level:

Aα = {y: πY (y) ≥ α}, for 0 ≤ α ≤ 1.

Note that an α-cut of a fuzzy set is not a fuzzy set; it is a crisp set.

For example, A0.5 = [4.5, 5.5] is the set of y values for which the possibility function is greater
than or equal to 0.5. From the triangular possibility distribution in figure 1.2, we can conclude
that if A expresses that the parameter lies in the interval [4.5, 5.5], then 0.5 ≤ P(A) ≤ 1.
From (1.5) we can deduce the associated cumulative necessity/possibility measures NY (−∞, y)
and ΠY (−∞, y) as shown in figure 1.3. These measures are interpreted as the lower and upper
limiting cumulative probability distributions for the uncertain parameter y .

Upper cumulative
distribution

Lower cumulative 
distribution

cu
m

ul
at

iv
e 

di
st

ri
bu

ti
on

Figure 1.3 – Bounds for the probability measures for the possibility function in figure 1.2
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1.2 Importance measures

DEFINITION

Importance measures

Importance Measures (IMs) are used to define the relative importance of the components of a system,
according to some criteria. In a risk analysis context, they can be used to rank the contributions of
components’ failures or of basic events to the system risk [Birnbaum 1969]. An importance measure
assigns a numerical value between 0 and 1 to each system component, where 1 indicates the highest
importance.

Importance measures can be used for risk-informed ranking (i.e., to arrange in order of
risk importance) or categorizing (i.e., to allocate into groups, according to pre-set risk criteria)
components or, more generally, basic events in a plant risk model, to guide the plant design
and Operation &Maintenance (O&M) [Hoare 1962; Modarres 2006]. With respect to maintenance,
the objective is to focus the efforts on what is risk-important, while relaxing the activities on
the low-significance groups of components, provided that at most only a small risk increase
results, still confidently within the limits of acceptability [Apostolakis 1990; Hoare 1962; Modarres
2006].
Different IM definitions can be used to address different aspects of reliability and risk (Fussel-
Vesely-FV, Criticality, Risk Achievement Worth-RAW and Risk Reduction Worth-RRW) [Apostolakis
1990; Youngblood 2001].
We address the case in which the models of the failure behaviors of the components rely on
parameters which are poorly known, and thus tainted with imprecision.
Generally speaking, uncertainties may affect the parameters of the probability distributions
that describe the components’ stochastic failure behaviors. A number of techniques have been
developed and widely investigated in the literature (e.g., [Helton and Oberkampf 2004; Baudrit et al.
2008; Kentel and Aral 2004, 2005, 2007; Möller 2004; Möller and Beer 2004, 2008; Möller et al. 2003,
2006]) to address this case; they allow propagation of the uncertainties from the distributions’
parameters to the probabilities Qj , j = 1…n, of occurrence of the (basic) events of interest (for
instance, from the component failure rate of an exponential distribution to its reliability at a given time
instant). In other (simpler) cases, uncertainties may directly affect the probabilities Qj , j = 1…n,
of the basic events (component reliabilities or availabilities at a given time instant, failure probabilities
of on-demand components).
These epistemic uncertainties will also affect the IMs of the components, and their consequent
ranking. To handle the problem, three phases must be performed:

� represent the imprecision in the uncertain quantities of the failure models of the
components;

� propagate the uncertainty onto the IMs values of the components I1, I2,…, Ij ,…, In. Let
I = (I1, I2,…, Ij ,…, In) be the vector of importance measure values;

� define a ranking of the values I1, I2,…, Ij ,…, In.

The first phase of representing uncertainty can be done in various ways, depending on the type,
quality and quantity of the available information [Zio and Pedroni 2013; Dubois et al. 1996; Helton
and Oberkampf 2004]. Generally speaking, when sufficiently informative data are available,
uncertainties can be righteously represented and propagated within the probability theory
framework (see § 1.1.1) [Baraldi and Zio 2010; Baraldi et al. 2009b]; in the opposite case, very
often the only available information comes from experts, and is of ambiguous and qualitative
nature: the uncertainty associated to this information is more naturally captured by other
representation techniques such as possibility distributions (see § 1.1.2). That is, a distribution
pair HQj

= [NQj
, ΠQj

] is introduced for every uncertain variable Qj , j = 1…n, which represents
either the unavailability or unreliability of the j-th component at a given time instant, for
j = 1…n.
In the second phase, the epistemic uncertainties are propagated through the function g(Q) =
g(Q1,Q2,…,Qj ,…,Qn) that links the input variables Qj , j = 1…n, to the output vector I =
(I1, I2,…, Ij ,…, In). In particular, g(Q) = g(Φ(Q)), where Φ(Q) is the structure function of
the system, which incorporates all the causal relations among the quantities Qj that lead to
the occurrence of the top event of interest (i.e., system failure). When epistemic uncertainty
is represented by probability distributions, the uncertainty propagation may rely, e.g., on
standard Monte Carlo Simulation (MCS) [Kalos and Whitlock 1986]; instead, when epistemic

6



1.3. Comparing the importance of components in presence of probabilistic epistemic uncertainties

uncertainty is represented by possibility distributions, the uncertainty propagation may rely
on the relatively simple rules of fuzzy arithmetic [Bojadziev and Bojadziev 1995], and provides as
an output a couple of possibility and necessity measures ΠIj and NIj , for j = 1…n.
The relevant contribution of the present work is related to the third issue: sorting the vector I .
Practical procedures for ranking the components based on their uncertain IMs are proposed
and discussed. This allows to concentrate themaintenance efforts on the components for which
an improvement in maintenance results in a greater improvement of system performance (its
reliability, risk, etc.). In § 1.3, a method is proposed to sort probabilistic uncertain quantities
[Baraldi et al. 2009b]; § 1.4 describes an adaptation of the method to the case of possibilistic
epistemic uncertainties [Baraldi et al. 2009a].

1.3 Comparing the importance of components in presence of probabilistic
epistemic uncertainties

In § 1.3.1, a probabilistic exceedance measure for the pairwise comparison of components’
importance is proposed. In § 1.3.2, in order to extend the method to systems with large
numbers of components, an empirical procedure for successive ranking is introduced to avoid
the combinatorial explosion of pairwise comparisons [Baraldi et al. 2009b].

1.3.1 A probabilistic exceedance measure for the pairwise comparison of components’
importance

The aim of this section is to present a method for comparing the importance of two components
A and B of an hypothetical system in presence of epistemic uncertainty on the components
performance parameters (reliabilities, failure rates, repair rates etc.), which propagate through the
system model leading to uncertainties in the system performance (e.g., its reliability). In this
scenario, importance measure calculations should reflect these uncertainties and so should
the ranking.
With respect to uncertainty representation, in general when sufficiently informative data
are available, probabilistic distributions are used. For simplicity of illustration, uniformly
distributed uncertainty is assumed to be affecting directly the IMs of components A and B.
Table 1.1 reports the ranges of the IMs distributions while figure 1.4 shows the corresponding
distributions.

Lower limit l Upper limit u

A 0.0141 0.0155

B 0.0020 0.0178

Table 1.1 – Parameters of the uniform distributions of uncertainty in the importance measures for compo-
nents A and B

7



Case studies in uncertainty propagation and importance measure assessment

Figure 1.4 – Probability density functions (pdfs) and cumulative distribution functions (cdfs) of the random
variables IA and IB (a and b) and IA − IB (c and d) in case of IMs with uniformly distributed
uncertainties [Baraldi et al. 2009b].

Looking at the distributions of the importance measures of A and B (denoted IA and IB, re-
spectively) one may observe that the IM of component B (IB), is significantly more uncertain
than that of component A (IA) but the expected value of IA, 𝔼[IA] is greater than that of B,
𝔼[IB]. On the other hand, there is a range in which the IB quantiles are larger than the IA ones.
For example, if one were to perform the ranking based on the IMs 95th quantile values, the
conclusion would be that component B is more important than A, contrarily to what would
be happen if the ranking were based on the expected values.
The drawback of comparing the expected values or specific quantiles lies in the loss of infor-
mation about the distribution. With reference for example to figure 1.4, the fact that the 95th
quantile of IA (0.015) is lower than that of IB (0.017) only means that the point value which IA
is lower than with probability of 0.95 is lower than the analogous point value for IB; the full
information on the actual difference between the distributions of IA and IB does not play any
role.
A natural way to give full account of the difference between the distributions of IA and IB is
to consider the random variable (rv) IA − IB whose pdf and cdf are shown in figure 1.4c and
figure 1.4d, respectively. The details of their analytical expressions are given in Appendix A.
In order to establish whether component A is more important than B, one can consider the
probability rAB = 1 − FAB(0) (where F is the cumulative distribution function) that IA is greater
than IB; for example, in the present case rAB = P(IA > IB) = 1 − FAB(0) = 0.81, which means
that with high probability component A is more important than B.
To decide on the relative importance of the two components A and B, it is necessary to fix
a threshold T ∈ [0.5, 1] on the rAB value such that if rAB is larger than T , then A is more
important than B, otherwise no conclusion can be given. Obviously, the lower the threshold,
the higher the risk associated with the decision.

Note however that the choice of a simple-valued threshold has some limitations when consid-
ering multiple components. For example, if the IMs of three components A, B and C are such
that their differences all fall very close to T , it could happen that IA > IB, IB > IC and IC > IA.
Moreover, rAB could fall very close to T , in which case no robust conclusion can be given on
the components’ importance given the inevitable approximations and uncertainties related to
the estimation of the IMs distributions.
These limitations can partially be overcome by referring the comparison to a threshold range
[Tl , Tu] in such a way that for the two components A and B [Baraldi et al. 2009b]:

� If rAB > Tu , then A is more important than B;
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1.3. Comparing the importance of components in presence of probabilistic epistemic uncertainties

� If rAB < Tl , then B is more important than A;

� If Tl < rAB < Tu , thenA is equally important to B. In this case, different kinds of additional
constraints/targets can guide the ranking order (costs, times, impacts on public opinion, etc.).

For further insights, it is of interest to relate the importance measures results obtained by the
probabilistic exceedance measure rAB = P(IA > IB) to the standard deviations of the IMs
distributions, σIA and σIB . Figure 1.5 shows the variation of rAB for increasing values of the
standard deviation σIB , keeping fixed the mean values of IA and IB and the ratio k = σIA/σIB for
different values of k. In the extreme case of no uncertainties on the knowledge of IA and IB
(σIA = 0 and σIB = 0), component A is more important than B and thus rAB = 1. Increasing the
standard deviation σIB (and thus also σIA , keeping the ratio k constant), as expected rAB = 1
holds as long as the pdfs of IA and IB do not overlap, i.e. IA and IB are uncertain quantities but
it is not uncertain that IA > IB. The higher the ratio k, the lower the set of points for which
rAB = 1. Finally, as the overlapping between pdfs increases rAB decreases [Baraldi et al. 2009b].

From the above considerations, it can be argued that uncertainties can affect the components
importance rank order and that reduction of uncertainties might be needed, in certain cases
and when possible, to decrease the risk associated with the safety decision. To effectively drive
the reduction of uncertainty, sensitivity analysis may be used, leading to the introduction of
Uncertainty Importance Measures (UIMs) to identify the contribution of the epistemic uncer-
tainty in the components’ performance parameters to the importance measures’ uncertainty
[Borgonovo 2006].

Figure 1.5 – rAB vs σIB , keeping k = σIA/σIB ,𝔼[IA] and 𝔼[IB] constant [Baraldi et al. 2009b]

1.3.2 An empirical procedure for component importance ranking in systems with large
numbers of components

In the previous section, a probabilistic measure of exceedance between two random variables
has been used to compare components’ importance measures in presence of uncertainties. To
extend the method to systems with a large numbers of components, a procedure for successive
ranking must be introduced to avoid the combinatorial explosion of pairwise comparisons.
The method proposed in this paper is an application of one of the most common sorting
algorithms, Quicksort [Hoare 1962]. It is a divide-and-conquer algorithm, which relies on a
partition of the elements based on a quantitative indicator of their ‘size’. To partition the
elements, it is required to choose one of them as pivot, i.e. as reference for moving all elements
of size smaller before the pivot and all elements of size larger after it. In the resulting iterative
partition procedure, the sublists of smaller and larger elements are recursively sorted.
In the case of interest here, the pivot element p is chosen as the component in the middle
position of the components importance rank list obtained looking only at the mean values
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of reliability/availability. The value of rpj = P(Ip > Ij) is then calculated for each component
j ≠ p in the list and the pre-defined threshold range [Tl , Tu] defines the rank order between p
and j. The steps of the procedure are as follows [Baraldi et al. 2009b]:

1. Rank the components according to their IMs computed by considering the mean values
of their reliability/availability parameters, i.e. without considering uncertainties.

2. Define the range [Tl , Tu] of values of the probabilistic exceedance measure rpj ; for values
rpj in this range, it is not possible to decide whether Ip > Ij or Ip < Ij and this leads to
consider components p and j as equally important, unless additional constraints/targets
(costs, times, impacts on public opinion, etc.) allow the definition of an importance rank
between the two.

3. Apply theQuicksort algorithm based on rpj = P(Ip > Ij):
3.1 List the components in the rank order found in step 1;

3.2 Choose the middle element of the list (sublist) as pivot element, p;

3.3 For each j in the sublist compute the cdf Fpf of Ip − Ij and evaluate rpj = 1 − Fpj(0):
� If rpj > Tu , then put j in the sublist of elements less important than p;

� If rpj < Tl , then put j in the sublist of elements more important than p;

� If rpj falls in [Tl , Tu], then p is equally important to j.

3.4 Append the sublist of less important elements to the right of p and the sublist of
more important elements to the left of p;

3.5 Recursively apply to each sublist steps 3.2-3.4 until no sublist with more than one
element exists.

More details concerning the algorithm are given in Appendix B.

1.4 Comparing the importance of components in presence of possibilistic
epistemic uncertainties

The ranking procedure discussed in the previous section is slightlymodified to give due account
to the fact that the IMs are not represented by probability distributions, but by possibility
distributions, i.e., families of probability distributions, whose upper and lower bounds are the
possibility and necessity measures, respectively. Letting πQs

(qs) be the possibility distributions
of the unreliabilities Qs , s = A,B, of components A and B, the steps of the procedure are the
following [Baraldi et al. 2009a]:

1. Compute the possibility distributions πΞAB
(ΞAB) of the variable ΞAB = ΞAB(IA, IB), defined

as:

ΞAB(IA, IB) =
⎧{
⎨{⎩

1 if ΔAB = IA − IB ≥ 0
0 otherwise

(1.8)

where IA and IB are the IMs of components A and B, respectively, and ΔAB = IA − IB is
the difference between IA and IB.
To do this:
1.1. select a value of α on [0, 1] and take as intervals of possible values of the unreliabili-

ties of the components the cuts [Qs ,Qs]α = {qs |πQs
(qs) ≥ α} , s = A,B;

1.2. for every member Is of the vector I , calculate the smallest and largest values of
g(Φ(Q)) (denoted by gIs

α
and gIsα , respectively), when the elements of Q range within

the intervals [Qs ,Qs]α ; that is, calculate:

gIs
α
= inf

l,ql∈[Ql ,Ql]α
g(Q) (1.9)

gIsα = sup
l,ql∈[Ql ,Ql]α

g(Q) (1.10)

these are the lower and upper bounds, respectively, of the α-cut of the possibility
distributions πIs(is), s = A,B;

10
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1.3. identify the bounds of the α-cut of the possibility distributions πΔAB
(δAB) of the

variables ΔAB = IA − IB (i.e., the differences between the IMs of components A and
B). These are given by [gIA

α
− gIBα , g

IA
α − gIB

α
];

1.4. identify the α-cut of πΞAB
(ΞAB); in this regard, notice that πΞAB

(0) = α if gIA
α
−gIBα < 0

and πΞAB
(1) = α if gIAα − gIB

α
≥ 0.

1.5. repeat steps 1.1-1.4 for another value of α.

2. the relation order between the IMs of components A and B is established on the basis of
the following rules:

� if πΞAB
(0) ≤ 0.3, then component A is more important than B;

� if πΞAB
(1) ≤ 0.3, then component B is more important than A;

� components A and B are equally important in the other cases.
This criterion is justified by the following considerations:

� πΞAB
(ΞAB) = 1 for at least one out of the two values of ΞAB (i.e., 0 and 1), assuming

that the distributions πΞAB
are normalized (i.e., there must be at least one point of

the Universe of Discourse (UoD) in which the distribution reaches 1);

� The decision in favor of one out of the two components is taken only when the
difference in their ‘degrees of surprise’ is large. A probabilistic interpretation of this,
makes more clear the idea behind the criterion. For example, let us suppose that
πΞAB

(0) = 0.2 and πΞAB
(1) = 1. Equation (1.5) allows to state that this is equivalent to

NΞAB
(0) = 0 and NΞAB

(1) = 0.8, which can be interpreted as (equation (1.6)):

0.2 = ΠΞAB
(0) ≥ PΞAB

(0) = P(IA ≥ IB) ≥ NΞAB
(0) = 0

1 = ΠΞAB
(1) ≥ PΞAB

(1) = P(IA ≤ IB) ≥ NΞAB
(1) = 0.8

To sum up, the probability that component B is more important than component A
lies in the interval [0.8, 1], whereas the probability of the opposite case is a value
between 0 and 0.2. In this situation, in which we are confident on the relevance of B
with respect to A, it is reasonable to decide to concentrate the maintenance efforts
on component B.

As in the probabilistic case (§ 1.3.2), when the number of components to be ranked is large (i.e.,
» 2), the Quicksort algorithm [Hoare 1962] has to be used to avoid the combinatorial explosion
of pairwise comparisons (see Appendix B for more details).
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2

A three-component system

The first case study is an artificial example involving a three-component system of literature.
The system, sketched in figure 2.1, is made up of a series of two nodes: the first is constituted by
two components in parallel logic, the second by a single component. Each of these components
is characterized by a single valued reliability (column 2 of table 2.1). The values of some
common IMs are reported in columns 3-6 of table 2.1. In the following, the discussion is
limited to the Birnbaum IM but the reasoning remains exactly the same for the other IMs
[Baraldi et al. 2009b,a].

A

B

C

Figure 2.1 – System Reliability Block Diagram

Reliability Birnbaum F-V Criticality RAW RRW

A 0.985 0.009 0.002 0.001 1.094 1.001

B 0.990 0.014 0.002 0.001 1.141 1.001

C 0.905 0.9999 0.999 0.998 10.5 634

Table 2.1 – Components’ reliability and importance measures

Let us now assume that the components’ (un)reliabilities are epistemically-uncertain: prob-
abilistic and possibilistic representations of such uncertainties are given in § 2.1 and § 2.2,
respectively.

2.1 Probabilistic representation of epistemic uncertainty

Let us assume that the components are exponential, i.e. with constant failure rates λi , i =
A,B,C and that epistemic uncertainties affect their failure rates. The epistemic uncertainties
in the failure rates are described by probability distributions described by the lognormal
distributions of figure 2.2, left, with the parameters given in table 2.2 [Baraldi et al. 2009b]:

fλi(λi) =
e

[ln(λi−μi)]2

2σ2i

λiσi√2π
(2.1)
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At each time instant t the reliability of component i is ri(t , λi) = e−λit with pdf (for 0 < λi < 1)
(figure 2.2, right):

fλi(t , λi) = −
e
−

[ln(−
ln(λi)

t −μi)]2

2σ2i

λiln(λi)σi√2π
(2.2)

Figure 2.2 – Lognormal distributions of the failure rate of component A (left) and corresponding pdfs of
the reliability at different time instants (right) [Baraldi et al. 2009b]

Mean Variance

A 1.00E-007 5.00E-08

B 1.50E-007 5.00E-08

C 1.00E-006 5.00E-07

Table 2.2 – Parameters of the lognormal distributions of the components’ failure rates

The parameters of the distributions of the failure rates (table 2.2) have been chosen such that
the mean values of the reliability at time t = 105 (in arbitrary units of time) are equal to the
values in column 2 of table 2.1; in passing, notice that the standard deviations of the reliability
at time t = 105 (in arbitrary units of time) are 0.005, 0.005 and 0.044 for components A, B and C,
respectively. In figure 2.3 a and b, the pdfs of the failure rates and reliabilities at time t = 105
(in arbitrary units of time) are reported for all three components.
In spite of the simplicity of the considered system, finding the Birnbaum IM distributions by
an analytical approach is impracticable. To overcome this difficulty, Monte Carlo sampling
has been applied. The resulting distributions at the fixed time instant t = 105 are plotted in
figure 2.3 c and d. It can be noted that the distribution of the IM of component C is displaced to
larger values than that of components A and B, which leaves no doubt that the most important
component is C, as expected from the structure of the system and the components’ reliability
values. As for the ranking of A and B, one must compute the rAB measure (§ 1.3.1). The result
obtained by Monte Carlo sampling is rAB = 0.23, which with respect to Tl = 0.3 and Tu = 0.7
leads us to conclude that component B is more important than component A. Hence, the final
component rank provided by the procedure proposed is CBA [Baraldi et al. 2009b].
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2.1. Probabilistic representation of epistemic uncertainty

Figure 2.3 – Pdfs of the failure rate (a) reliability (b) and Birnbaum IM (c and d) of the three components
[Baraldi et al. 2009b]

As a point of comparison, the procedure proposed in [Modarres 2006] has been applied (see
Appendix C for details). The probability mass functions (pmfs) of the ranks of the three
components obtained by Monte Carlo sampling of their uncertain failure rates are reported in
figure 2.4. Notice that r ∗CA = r ∗CB = 1 > r ∗AB, which implies that component C is more important
than both A and B also for this method. On the other hand, A is more important than B, given
that the exceedance measure r ∗AB = 0.52 × (0.48+0.52) + 0.48×0.52 = 0.77. Notice, however, that
if one considers r ∗BA = 0.48 × (0.52+0.48) + 0.52×0.48 = 0.73, B is more important than A; this
shows that, in general, the exceedance measure r ∗ij ≠ 1 − r ∗ji is dependent on the choice of the
pivot, and so is the final rank [Baraldi et al. 2009b].
It is interesting to investigate the relation between the two exceedance measures presented,
r ∗ij and rij . Given that component C is the most important in all the M Monte Carlo samples
(P(RC = 1) = 1), the probability that A occupies a specific rank order between 2 and 3 is
equivalent to the probability that B gains the only other rank order available, i.e. the probability
mass value of rank order 2 of component A is the exceedance measure rAB and, vice versa, the
probability mass value of rank order 2 of component B is the exceedance measure rBA.
Notice that the Birnbaum IM values in table 2.1, column 3, obtained neglecting uncertainties,
would lead to the conclusion that B is more important than A.
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Figure 2.4 – Probability mass functions of the rank orders of the three components [Baraldi et al. 2009b]

2.2 Possibilistic representation of epistemic uncertainty

In the case study investigated in the previous section, the failure times of the components are
assumed exponentially distributed with failure rates affected by epistemic uncertainties, which
are modeled by lognormal distributions. Instead, in this section for the sake of simplicity,
but with no loss of generality, we consider the case in which the epistemic uncertainties are
described by means of possibility distributions πQj

(qj) and directly affect the values qj of the
components’ unreliabilities Qj , j = A,B,C [Baraldi et al. 2009a]. To preserve the parallelism
between the two frameworks (i.e., probability and possibility theories), the possibility distri-
butions πQj

(qj) are built coherently with the corresponding probability distributions FQj
(qj)

described in the previous section. To do this, a number of techniques have been proposed in
the literature (see [Dubois 2006] for a survey); one such technique, based on the Chebychev
inequality

P (Qj ∈ [q∗j − aσj , q∗j + aσj]) ≥ 1 −
1
a2

for a ≥ 1 (2.3)

is adopted in this work [Dubois 2006].
This inequality makes it possible to build a distribution-free possibilistic approximation of
the unknown probability distribution of the value qj , when all that is known is its mean
value q∗j and the standard deviation σj , and defines a bracketing approximation of sym-
metric intervals around the value q∗j : notice the mean values q∗j and standard deviations
σj used in equation (2.3) are those of the probability distributions FQj

(qj) described in the
previous section. The resulting possibility distributions πQj

(qj) are shown in figure 2.5
(a, b and c). The possibility and necessity measures ΠQj

and NQj
associated with the pos-

sibility distributions πQj
(qj) of the unreliabilities in figure 2.5 (a, b and c) are shown in

figure 2.5 (d, e and f), respectively, jointly with the Cumulative Distribution Functions
(CDFs) FQj

(qj) associated to the pdfs in figure 2.3(b), for j = A,B,C . In this respect, no-
tice that FQj

(qj) ∈ [NQj
, ΠQj

], for every j = A,B,C . This proves that the CDFs are consis-
tent with the corresponding possibility distributions; that is, FQj

(qj) belongs to the family

P(ΠQj
) = {PQj

,∀A measurable, PQj
(A) ≤ ΠQj

(A)} = {PQj
,∀A measurable,NQj

(A) ≤ PQj
(A)}

of all the probability distributions that are upper bounded by the possibility measure ΠQj
and

lower bounded by the necessity measure NQj
.

The uncertainties affecting the components’ unreliabilities at a given time instant are prop-
agated through the structure function of the three component system, and the possibility
distributions describing the uncertainty on the importance of the components are found. Fig-
ure 2.6 shows the pairs HI Bj

= [NIj
B , ΠI Bj

] and the CDFs FI Bj (iBj ) of the Birnbaum IMs of the
three components in figure 2.1 (notice that the CDFs FI Bj (iBj ) are associated to the probabilistic
representation of epistemic uncertainty of § 2.1). Looking at this figure, it is intuitive to state
that component C is more important of both components A and B, whatever the framework
used to describe the uncertainties on the basic events. In fact, the possibility measure ΠI BC
(i.e., the upper bound of the probability distributions) of the Birnbaum IM of component C,
I BC , is far away from both the necessity measures NI BA

and NI BB
(i.e., the lower bounds) of the
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Figure 2.5 – Possibility distributions of the unreliabilities of the components, a), b) and c) and their
possibility measures, necessity measures and CDFs d), e) and f) [Baraldi et al. 2009a]

IMs of components A and B, respectively: this brings the impossibility of A or B being more
important than C [Baraldi et al. 2009a].
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Figure 2.6 – Possibility measure, necessity measure and CDF of the IMs of the components [Baraldi et al.
2009a]

On the other hand, ranking the IMs of components A and B is not straightforward, as their
possibility and necessity measures overlap each other: the procedure described in Section
3.2 is used to this aim. The results of the application of the proposed procedure are reported
in figure 2.7 and figure 2.8: figure 2.7 shows the pairs HΔjk

= [NΔjk
, ΠΔjk

] and the CDFs
FΔjk

of the variables Δjk = Ij − Ik , j, k = A,B,C (i.e., the differences between the IMs of the
components); instead, figure 2.8 reports the possibility distributions πΞkj

(ξkj) of the variables
Ξkj = Ξkj(Ik , Ij), j, k =A, B, C, defined in § 1.4. Component C turns out to be the most important,
whereas components A and B are equally important [Baraldi et al. 2009a]. Notice that in the
probabilistic framework of the previous section, component B is classified as more important
than component A. The fact that the results obtained in the probabilistic and possibilistic
frameworks are different is unsurprising. In fact, as pointed out in [Baraldi et al. 2009b,a], the
difficulty in establishing a relation order between two uncertain quantities arises when their
distributions overlap, that is, when there is a more or less extended zone of their UoD in which
both probability densities are different from zero. In this case, the corresponding CDFs appear
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close to each other or even intersect. Now, the CDFs of the unreliabilities in figure 2.5 d), e), f)
are in the middle of the areas limited by the corresponding possibility and necessity measures;
this entails that the closeness of the CDFs is less significant than that of their bounds. Thus, in
some cases a distinction between the importance of two components may be possible in the
probability framework, but not in the possibilistic one. Ultimately, this is due to the fact that
the possibility distributions allow to represent and propagate a larger amount of uncertainty:
within the probability framework one focuses just on one function of the infinitely many
possible ones determined by a possibility distribution.
To sum up, the final ranking may be influenced by the choice of the framework in which the
analysis is carried out, which basically depends on the available data.
The final ranking derived from the uncertain IMs depends also on how “open” the decision-
maker wants to remain. Namely, in presence of a given amount of data, she may believe that
resorting to the probability theory framework is justified. This leads to a final ranking which
is expected to be capable of discriminating among the components based on their IMs. In
the opposite case, the possibility distribution framework leaves the final ranking open to any
distribution.
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Figure 2.7 – Comparison of the Importance measures: possibility measure, necessity measure and CDF of
the variables Δkj , k, j = A,B,C and k ≠ j
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3

The auxiliary feedwater system of a
nuclear pressurized water reactor

When the number of components in the system is large, the number of pairwise comparisons
of their importance measures (IMs) needed for their importance ranking increases dramatically.
This calls for a systematic procedure of analysis to efficiently perform the importance ranking.
In this chapter, we will illustrate the calculation of an importance ranking on a larger system
with more components.
Let us consider a simplified Auxiliary FeedWater System (AFWS) of a Pressurized Water
Reactor (PWR) whose Reliability Block Diagram (RBD) is presented in figure 3.1. The case
study is taken from [Modarres 2006], where it is assumed that:

� all components are in standby mode;

� all components are periodically tested;

� the failure rates of all components are affected by epistemic uncertaintywhich is described
by lognormal probability distributions.

With these assumptions, the average unavailability Qj of each component j = A, B,…,N , can
be predicted by [Modarres 2006; Zio 2007]:

Qj =
1
2
λjT 0

j + f rj ×
T r
j

Tj
+
T t
j

Tj
(3.1)

where λj is the failure rate (h−1), Tj is the test interval (h), T r
j is the average repair duration (h),

T t
j is the average test duration (h), f rj is the frequency of repair/test interval and T 0

j = Tj−T r
j −T t

j
is the operating time (h), for any j = A,B,…,N .

A
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C
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I

J

K

L

M

N

Figure 3.1 – Reliability block diagram of the auxiliary feedwater system [Modarres 2006]

Let us now assume that the components’ failure rates (and, thus, the components’ unavail-
abilities) are epistemically-uncertain: probabilistic and possibilistic representations of such
uncertainties are given in § 3.1 and § 3.2.
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3.1 Probabilistic representation of epistemic uncertainty

Table 3.1 contains the data relative to the lognormal distributions of the components’ failure
rates and to other operating characteristics [Modarres 2006].

Name
Mean

failure rate
(μj)

Standard
deviation
of failure
rates (σj)

Frequency
of repair f r

j

Average
test

duration
T t
j (h)

Average
repair time

T r
j (h)

Test
interval
Tj(h)

A 1.00E-07 5.00E-08 9.20E-03 0 5 720

B 1.00E-07 5.00E-08 9.20E-03 0 5 720

C 1.00E-06 5.00E-07 2.50E-02 0 10 720

D 1.00E-06 5.00E-07 2.50E-02 0 10 720

E 1.00E-06 5.00E-07 2.50E-02 0 10 720

F 1.00E-06 5.00E-07 2.50E-02 0 10 720

G 1.00E-07 5.00E-08 7.70E-04 0 15 720

H 1.00E-07 5.00E-08 1.80E-04 0 24 720

I 1.00E-04 5.00E-05 6.80E-01 2 36 720

J 1.00E-04 5.00E-05 6.80E-01 2 36 720

K 1.00E-05 5.00E-06 5.50E-01 2 24 720

L 5.00E-07 2.50E-07 4.30E-03 0 10 720

M 3.00E-04 1.50E-04 1.50E-01 0 10 720

N 1.00E-07 5.00E-08 5.80E-04 0 5 720

Table 3.1 – Failure data for the components of the auxiliary feedwater system

In this case study, the analysis is illustrated with reference to the components’ FV IMs, which
are firstly computed with respect to their average unavailabilities (table 3.2, column 1). Notice
that the fact of referring to average unavailabilities leads to no dependence of the probabilistic
exceedance measure r ∗ij on time, unlike to the previous case study which made reference to
the components’ time-dependent reliabilities.
Let us now consider the epistemic uncertainties affecting the failure rates λi (table 3.1, col-
umn 3) and apply first the ranking procedure proposed in [Modarres 2006] (appendix C).
Figure 3.3 shows for each component of the system, the probability mass distributions of the
rank orders obtained in step 3.4 of the procedure. Notice that these results are different from
those reported in [Modarres 2006] with respect to both the mean rankings and the components’
pmfs. These differences are due to the approximations used in [Modarres 2006] for computing
the cut sets probabilities and the importance measures themselves. Table 3.2 reports the
exceedance measures r ∗ij between the component i and the next two components in the
ranking obtained by considering the average component unavailability (column 1). Following
steps 4.1 and 4.2 of the procedure (with [Tl , Tu] = [0.3, 0.7]), the ranking reported in the last
column of table 3.2 is obtained.
Then, the ranking procedure proposed in this work (cf. § 1.3) has been applied. Table 3.2
reports the probabilistic exceedance measures computed according to the proposed procedure
between all possible pairs of components. However, notice that the application of the Quick-
sort algorithm requires the computation of only the measures reported in italic in table 3.3.
Figure 3.7 shows the operations made byQuicksort: the bolded elements in the sublists are
chosen as pivots and the arcs denote the result of the comparisons: components more impor-
tant are put in the sublist on the left of the pivot, components less important on the right
[Baraldi et al. 2009b].
The first pivot is H (the element in the middle of the list) and the exceedance measures rHj
for j ≠ H are computed; on this basis, the two sublists MNLIJK (more important components,
left branch) and GFCDEAB (less important components, right branch) are created. Following,
for example, the less important elements branch (right) of Figure 3.7, the middle element D is
chosen as pivot of the sublist GFCDEAB; F has same rank order of D; G, A and B are placed
together in the sublist of the more important elements and C, E in the lower importance sublist.
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At the next iteration, A is chosen as pivot and the algorithm puts B in the same rank order as
A in the lower importance sublist, whereas G goes into the sublist of higher importance. At
the last iteration, C is taken as pivot and E is put in the sublist of the less important elements.
The splitting and orders of this branch is completed because the base case of the recursion is
met. The final ranking of this branch is (from left to right) G, (A, B), (D, F ), C, E [Baraldi et al.
2009b].
As for the overall final ranking of all the system elements, the proposed procedure (table 3.3,
last column) and the procedure in [Modarres 2006] (table 3.2, last column) provide different
results; this disagreement derives from the different numerical values of the exceedance
measures (for example, rMN = 0.464 while r ∗MN = 0.776). These differences are due to the
fact that, for any i and j, rij depends only on the importance measures of i and j themselves
whereas r ∗ij depends on the probability that a component occupies a specific order and thus
also on the importance measures of the other components of the system [Baraldi et al. 2009b].
It is also important to analyze the dependence of the final ranking from the choice of the
pivot element in the ranking algorithm. The ranking procedure proposed in this work may
encounter difficulties in cases characterized by, for example, three components i, j, k leading
to rij , rik , rjk ≈ Tu and Ii = Ij , Ij = Ik , as per figure 3.2. In this case, if component i is chosen as
pivot the final rank is “i equally important to j” and (i, j) less important than k, whereas if j is
chosen as pivot the three components are considered equally important and, finally, if k is
chosen as pivot then i is less important than (j, k), which are equally important. However, this
problem is partially overcome choosing the element in the middle of the list as pivot, in this
case, i, j and k are considered equally important, and this seems the most reasonable choice.
Notice that luckily these circumstances are expected to be very infrequent and can be handled
case by case on the basis of other constraints/targets of interest [Baraldi et al. 2009b].

MNLIJLHGFCDEAB

MNLIJK

MN

MN

L

L

IJK

IJ K

H

H

H

GFCDEAB

GAB

G AB

DF

DF

CE

C E

Figure 3.2 – Quicksort procedure application example [Baraldi et al. 2009b]

On the other hand, the final ranking is even more dependent from the choice of the pivot with
the method proposed in [Modarres 2006], which is characterized by an exceedance measure
that does not satisfy r ∗ij ≠ 1 − r ∗ji , as pointed out in § 2.1.
Finally, another parameter influencing the final results is the choice of the range [Tl , Tu]; for
example, in the case study of the AFWS, considering [0.25, 0.75] instead of [0.3, 0.7] leads I, J,
K to be equally important and so also H and G [Baraldi et al. 2009b].

3.2 Possibilistic representation of epistemic uncertainty

Table 3.1 contains the values of the parameters of the lognormal distributions of the compo-
nents’ failure rates and other operating characteristics, which determine the values of means
and standard deviations of the variables Qj . Similarly to what was done in the simpler case
study of chapter 2, the possibility distributions of the components’ unavailabilities are built
by putting these latter values into the Chebychev inequality (equation (2.3)). Figure 3.5 shows
the corresponding possibility and necessity functions together with their CDFs.
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Mean
Rank M N L I J K H G F C D E A B

Fi-
nal
rank

M 0.776 1.000 M
N 0.603 0.886 0.917 N
L 0.805 0.804 L
I 0.683 0.994 I.J
J 0.976 1.000 I.J
K 1.000 1.000 K
H 0.892 0.989 H
G 0.969 0.973 G
F 0.651 0.618 C,D,E,F
C 0.583 0.632 C,D,E,F
D 0.662 0.999 C,D,E,F
E 1.000 1.000 C,D,E,F
A 0.751 A
B B

Table 3.2 – Components’ FV importance measure rank orders obtained by considering the average un-
availabilities (column 1); exceedance measures r ∗ij between the component i in the row and the
following two i+1 and i+2 in the rank order of column 1 (columns 2-15); final rank obtained by
the procedure proposed in [Modarres 2006] (last column) [Baraldi et al. 2009b]

Figure 3.3 – Probability mass functions of the components’ rank orders [Baraldi et al. 2009b]
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Mean
Rank M N L I J K H G F C D E A B

Fi-
nal
rank

M - 0.464 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 N,M
N - - 0.764 0.949 0.949 0.949 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 M,N
L - - - 0.914 0.914 0.917 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 L
I - - - - 0.509 0.723 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 I,J
J - - - - - 0.723 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 I,J
K - - - - - - 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 K
H - - - - - - - 0.720 1.000 1.000 1.000 1.000 1.000 1.000 H
G - - - - - - - - 1.000 1.000 1.000 1.000 1.000 1.000 G
F - - - - - - - - - 0.837 0.500 0.923 0.004 0.004 A,B
C - - - - - - - - - - 0.163 0.999 0.000 0.000 A,B
D - - - - - - - - - - - 0.923 0.004 0.004 F,D
E - - - - - - - - - - - - 0.000 0.000 F,D
A - - - - - - - - - - - - - 0.498 C
B - - - - - - - - - - - - - - E

Table 3.3 – Components’ FV IM rank orders obtained by considering the average unavailabilities (column 1);
probabilistic exceedance measures rij between the component i in the row and the component j in
the column (columns 2-15); components’ FV IM rank orders obtained by applying the proposed
probabilistic exceedance measure within the Quicksort algorithm (last column) [Baraldi et al.
2009b]

Figure 3.4 – A particular case of importance measure comparison for three components i, j, k
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Figure 3.5 – Possibility measures, necessity measures and CDFs of the unavailability of the components of
the AFWS [Baraldi et al. 2009a]

The uncertainties on components’ unavailabilities QA,…,QN are propagated through the
function g(Φ(Q)), and the Birnbaum IMs of the different components are obtained.
Figure 3.6 shows the CDFs, and the possibility and necessity measures of the Birnbaum IMs
of the components of the AFWS. For visualization, these are reported in different scales. As
expected, the largest measure is assigned to component N, which is a Single Point Failure (i.e.,
its failure results in the loss of AWFS functionality). This state of affairs entails that the overall
AWFS reliability is strongly sensitive to the improvement of the reliability of component N,
and thus the maintenance actions on it are particularly effective.
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Figure 3.6 – Possibility and necessity measures of the components’ Birnbaum IMs [Baraldi et al. 2009a]

The method proposed in § 1.4 is used to rank the components of the AFWS. Figure 3.7 shows
the dynamics of the Quicksort algorithm in the considered case study, when the components
are initially arranged in alphabetical order, and the pivot is always chosen as the central
element of each sublist. At the first iteration, the pivot is H and two sublists are created: one
containing the components that are equally or more important than the pivot (right branch,
in this case it contains L and N ) and the other with the less or equally important components
(left branch, in this case it includes ABCDEFGIJK ). Thus, H takes the third place instead of L,
which currently occupies the second position, being more important than H. Notice that the
pairwise comparisons also show that H is equally important than G, although the algorithm
leaves G in its current position.
The sublist of more important components is then sorted: the comparison between N and L
shows that the former is more important than the latter.
The less important elements branch contains ABCDEFGMIJK ; its middle element, F, is chosen
as pivot. The components ABCDEFIJM are more or equally important than F. In particular, this
latter is equally important to E, C and D. With reference to the right sublist (more important
components), G is the pivot element, and it swaps its position with J, that is, the importance of
J is smaller than that of G. The algorithm proceeds as illustrated, and the final ranking is that
reported in table 3.4. There is a first group of elements (FCDE) whose IMs are considerably
smaller than those of the components of the second group (ABIJM). A further group (GHK )
of components with similar importance has been identified; these are less important than L
(the second most important component), which is considerably less important than N [Baraldi
et al. 2009a].

Ranking order 14-13-12-11 10-9-8-7-6 5-4-3 2 1

Components F D C E A B I J M G H K L N

Table 3.4 – Final ranking of the components’ IMs (possibility theory framework) [Baraldi et al. 2009a]
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ABCDEDFGHIJKLMN

ABCDEFGMIJ

F BCDEAGMIJK

BCDEAJMI

BCDE

D CBE

C E B

A JMI

J M I

G K

H LN

L N

Figure 3.7 – Steps of the Quicksort algorithm [Baraldi et al. 2009a]

Notice that the final ranking depends on the initial arrangement of the components and on the
choice of the pivot. For example, in the case investigated above, theQuicksort algorithm does
not compare the importance of K and I ; this comparison shows that they are equally important,
so that the following relations hold I BG = I BK , I BK = I BI and I BI = I Bj . In this case, components
G, K , I and J are considered equally important, even though the direct comparison between
G and J shows that I BG > I Bj . In turn, a more correct final ranking would be that reported in
table 3.5.
An intuitive way to obtain a more “robust” final ranking is to run the sorting algorithm in
correspondence of different choices of pivot selection policy and initial arrangement. Obvi-
ously, this may require large computation times. Notice also that, even if no attention is paid
to the search for a more robust ranking, then the resulting maintenance decisions are neither
“wrong” nor non-conservative; rather, the possibility of considering other decision criteria
(cost, logistic aspects, etc.) is precluded.
Finally, the Quicksort algorithm is applied to the case in which the uncertainties on the basic
events are described by probability distributions. The final ranking is reported in table 3.6.
Some differences can be observed; that is, the components IMs are more distanced so that the
group of components with similar IMs values are less numerous. Again, this is due to the fact
that the overlaps between the CDFs are less significant than those of their bounds.

Ranking order 14-13-12-11 10-9-8-7-6-5-4-3 2 1

Components F D C E A B I J M G H K L N

Table 3.5 – Final ranking of the components’ IMs (possibility theory framework), for a different choice of
their initial arrangement [Baraldi et al. 2009a]

Ranking order 14-13 12-11 10-9 8-7 6-5 5-4 3 2 1

Components C E D F A B I J M K G H L N

Table 3.6 – Final ranking of the components’ IMs (probability theory framework) [Baraldi et al. 2009a]
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4

Uncertainties in a flood risk model

This chapter illustrates uncertainty propagation on a more complex example, concerning the
risk-based design of a flood protection dike.

4.1 Introduction

The growing concern about the environment and the potential risks associated with many
human activities and new technologies have created increasing interest in Environmental
Risk Assessment (ERA), which includes human health risk assessments, ecological or ecotox-
icological assessments and specific industrial applications of risk assessment that examine
end-points in people, biota or ecosystems [Fairman et al. 1998]. Environmental risk assessment
is a critical, essential part of any decision-making process because it offers sound bases for
assessing and ranking potential damages to the environment: as a consequence, the evalua-
tion of environmental risk due to anthropic activities is an important step in mitigating their
impact on natural resources and in recreating the co-evolutionary process between human
and natural components of the environment [Darbra et al. 2008; Scandurra 1995].
Decision-makers of ecological policy and management require sound scientific information
on the environmental risk associated with many different activities in order to arrive at
and to justify their decisions: thus, there is a need to evaluate all potential risks that can
cause environmental damage. This entails identifying all the potential actions, events and
phenomena that may cause a damage to the environmental system of interest, quantifying
the corresponding consequences and estimating their likelihood [Darbra et al. 2008; Fairman
et al. 1998; Lein 1992].
Within this framework of analysis, the actions, events and physical phenomena that may
cause damages to an environmental system, are in general described by complex mathematical
models, which are then implemented in codes to simulate the behavior of the system of interest
under various conditions [USNRC 2009; NASA 2010; EPA 2009].
In practice, not all the system characteristics can be fully captured in the mathematical model.
This is due to the fact that i) many of the events and physical phenomena of interest are
random in nature (the flooding of a river, an earthquake) and ii) the knowledge of the analyst
about the phenomena involved is typically not complete. A complete environmental risk
assessment usually requires a large amount of data. In some rare cases, extensive statistical
data may be available and can contribute to an understanding of the frequency and the severity
of the hazardous events of interest; however, it is very common that environmental data is
scarce or qualitative, vague and imprecise [Darbra et al. 2008]. As a consequence, uncertainty is
always present in the values of the input parameters and variables of the mathematical model:
for example, in the models for groundwater risk assessment, elements of uncertainty lie in
geological heterogeneity, physiological exposure parameters, and cancer potency [Maxwell
et al. 1998]; in the models for the risk assessment of polluted sites, uncertainty may arise from
the limited information that can be obtained from the contaminated sites due to technology
limitations and costs of the analysis [Lehn and Temme 1996]; in the models for hydraulic
risk assessment, uncertainty lies in hydraulic conductivity, specific yield, transmissivities,
porosities, dispersivities and deoxygenation rate coefficients [Halkidis et al. 2009]. This input
uncertainty propagates into variability in the model output.

In the work presented in this chapter, the uncertainties characterizing the inputs of an hy-
draulic model for the risk-based design of a flood protection dike have been analyzed and
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propagated to the output variable of interest, the maximal water level reached by a river
during the year. More specifically, the problem regards a dike that has to be built to protect
a residential area close to the river. Two major issues have to be taken into account: i) the
construction of a dike involves high building costs and annual maintenance costs; ii) the
natural phenomenon of flooding is subject to uncertainties. Thus, the analyst has to evaluate
different design options, accounting for the uncertainties [Limbourg and de Rocquigny 2010].
For the treatment of uncertainty, we adopt the classical distinction between randomness due
to inherent variability in the system behavior (aleatory, objective, stochastic uncertainty) and
imprecision due to lack of knowledge and information on the system (epistemic, subjective,
state of knowledge uncertainty) [Apostolakis 1990; Helton and Oberkampf 2004].
With respect to the representation of the uncertainties, probability distributions are used to
describe aleatory uncertainty [Apostolakis and Kaplan 1981; Huanga et al. 2001; USNRC 2005, 2002,
2009; Maxwell et al. 1998] and both probability and possibility distributions are used to describe
epistemic uncertainty [Baudrit et al. 2006, 2008; Dubois and Prade 1988a; Dubois 2006].
With respect to uncertainty propagation, a purely probabilistic approach is considered when
epistemic uncertainty is described by probability distributions, whereas a ‘hybrid’ (i.e., mixed
probabilistic and possibilistic) approach is employed in the task of jointly propagating proba-
bilistic and possibilistic uncertainties. Themodel for the risk-based design of a flood protection
dike mentioned above [Limbourg and de Rocquigny 2010] is used as a benchmark for the compari-
son between the two approaches.

The remainder of this chapter is organized as follows. In section 4.2, the uncertainty represen-
tation frameworks (i.e., probability and possibility theories) are briefly recalled, with particular
emphasis on different methods used for building possibility distributions; in § 4.3, the details
of the techniques applied for the joint propagation of aleatory and epistemic uncertainties are
given; in § 4.4, the flood model considered for the uncertainty propagation task is presented
and the results of the uncertainty propagation are reported and commented; in section 4.5,
some conclusions are provided.

4.2 Uncertainty representation

In the work presented in this chapter, aleatory uncertainty is described by probability distribu-
tions and epistemic uncertainty is described by both probability and possibility distributions:
the reader is referred to chapter 1 for basic details about probability theory (§ 1.1.1) and
possibility theories (§ 1.1.2) for epistemic uncertainty representation.
In the following, the different approaches used for building possibility distributions are de-
scribed in some detail.

4.2.1 Building possibility distributions

This section is mainly focused on approaches for constructing possibility distributions of
the parameters/variables subject to epistemic uncertainty. In particular, in § 4.2.1, triangular
possibility distributions are considered; in § 4.2.1, the use of Chebyshev inequality is illustrated;
finally, in § 4.2.1, two methods for transforming a probability distribution into a possibility dis-
tribution are described based on the principle of maximum specificity and on the normalization
of the probability density function.

Triangular function

Let us suppose that the analyst knows that an uncertain variable can take values in a given
range [a, b] and the most likely value is c. To represent this information a possibility dis-
tribution πT can be taken as a triangle with basis determined by the range [a, b] (i.e., the
absolute physical limits of the variable) and with vertex taken in correspondence of the most
likely value c: in other words, the possibility distribution equals 0 in correspondence of the
extreme values a and b of the physically allowable range and 1 in correspondence of the most
likely value c. It has been shown that the family of probability distributions defined by a
triangular possibility distribution πT with range [a, b] and vertex c contains all the probability
distributions with support I = [a, b] and mode c [Baudrit and Dubois 2006].
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Chebyshev inequality

If the analyst knows the mean μ and the standard deviation σ of the uncertain variable of
interest, then the Chebyshev inequality [Kendall and Stuart 1977] can be used to construct a
possibility distribution. Actually, the use of continuous possibility distributions for represent-
ing probability families heavily relies on probabilistic inequalities. Such inequalities provide
probability bounds for intervals forming a continuous nested family around a typical value.
This nestedness property leads to interpreting the corresponding family as being induced by a
possibility measure. These bounds are usually used for proving convergence properties but, in
this context, they can be used for representing knowledge. This is the case of the Chebyshev
inequality, for instance.

DEFINITION

The Chebyshev inequality

The classical Chebyshev inequality [Kendall and Stuart 1977] defines a bracketing approximation on
the confidence intervals around the known mean μ of a random variable Y , knowing its standard
deviation σ. The Chebyshev inequality can be written as follows:

P(|Y − μ| ≤ kσ) ≥ 1 −
1
k2

for k ≥ 1 (4.1)

The Chebyshev inequality defines a possibility distribution that dominates any density with
givenmean and variance: it allows to define a possibility distribution π by considering intervals
[μ−kσ , μ+kσ] as α-cuts of π and letting π(μ−kσ) = π(μ+kσ) = 1

k2
. This possibility distribution

defines a probability family Pμ,σ (π) which has been proven to contain all distributions with
mean μ and standard deviation σ, whether the unknown probability distribution function is
symmetric or not, unimodal or not [Baudrit and Dubois 2006].

Probability-possibility transformations

In this section, we consider transformations from probability distributions to possibility distri-
butions. It is worth noting that in the transformation procedure (i.e., going from probability
to possibility) “some information is lost because there is a conversion from pointed-valued
probabilities to interval-valued ones” [Dubois et al. 1993].
Given the interpretation of possibility and necessity measures as upper and lower probabilities,
a possibility distribution π induces a family P(π) of probability measures. There is not a
one-to-one relation between possibility and probability, and transformations from a probability
measure P into a possibility distribution π can only ensure that

1. P(π) includes P ;

2. P(π) is selected according to some principle (rationale); e.g., “minimize loss of informa-
tion”.

The following should be basic principles for such transformations [Dubois et al. 1993]:

� The probability-possibility consistency principle
The family P(π) is formally defined as P(π) = {P :∀A ⊆ Y , P(A) ≤ Π(A)}.
It seems natural to require a transformation to select P from P(π) [Dubois et al. 1993].
This is referred to as the probability-possibility consistency principle, formulated as
P(A) ≤ Π(A),∀A ⊆ Y .

� Preference preservation
A possibility distribution π induces a preference ordering on Y, such that π(y) > π(y′)
means that the outcome y is preferred to y′. A transformation should therefore satisfy
π(y) > π(y′) ⇔ p(y) > p(y′).

In the following, two methods for transforming a probability distribution into a possibility
distribution are considered: the first one is based on the principle of maximum specificity; the
second one on the normalization of the probability density function.
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Figure 4.1 – Transformation based on the principle of maximum specificity; the value of the possibility
function π t at y , π t(y), equals the shaded area

The principle of maximum specificity The most specific possibility distribution π t , or rather
the minimum area under π, that dominates a given probability density p is given by:

π t(y) = π t(h(y)) = ∫
y

−∞
p(x) dx + ∫

+∞

h(y)
p(x) dx = F (y) + F (h(y)) (4.2)

where F (·) = 1 − F (·) and h(y) = max{x : p(x) ≥ p(y)}. For the sake of clarity, the transforma-
tion in (4.2) is graphically illustrated in figure 4.1.
It is interesting to observe that for this transformation:

N ([y , h(y)]) = P ([y , h(y)]) ≤ Π([y, h(y)]) = 1

i.e., the transformation prescribes equality between the necessity of a given α-cut and the
probability of the same α-cut.
The transformation applies to unimodal, continuous and support bounded probability densities
p. Moreover this criterion is not necessarily suitable for the transformation of a subjective
probability distribution reflecting an expert opinion.

Normalization of probability density The possibility distribution resulting from the transfor-
mation is given by the normalization of probability density, i.e., μp =

p(y)
sup p(y)

. Note that the
distribution resulting from this normalization (when taken to be a possibility distribution)
does not in general adhere to the probability-possibility consistency principle [Dubois and Prade
1980].

4.3 Propagation of aleatory and epistemic uncertainties through a model

Let us consider a model whose output is a function Z = f (Y1,Y2,…,Yi ,…,Yn) of n uncertain
variables Yi , i = 1…n, ordered in such a way that the first k are affected by purely aleatory
uncertainty and the last n − k by purely epistemic uncertainty. The aleatory uncertainty
is described by probability distributions pYj(yj), j = 1…k; on the contrary, the epistemic
uncertainty may be represented either by probability distributions, pYl(yl), l = k + 1…n, or by
possibility distributions, πYl(yl), l = k + 1…n. A graphical representation of this framework
for uncertainty modeling is given in figure 4.2.
If both aleatory and epistemic uncertainties are represented by probability distributions, a
purely probabilistic approach [Kalos and Whitlock 1986; Marseguerra and Zio 2002] based on
Monte Carlo simulation is embraced (§ 1.3); if the aleatory and epistemic uncertainties are
represented by probability and possibility distributions, respectively, a Monte Carlo simulation
and fuzzy interval analysis approach [Baudrit et al. 2006; Baraldi and Zio 2008; Flage et al. 2010a,b]
is considered (§ 1.4).
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𝑍 = 𝑓(𝑌1, …, 𝑌𝑗, …, 𝑌𝑘, 𝑌𝑘+1, …, 𝑌𝑙, …, 𝑌𝑛)

purely aleatory variables purely epistemic variables

probability
distributions

probability
distributions

possibility
distributions

𝑝𝑌1 (𝑦1), …, 𝑝𝑌𝑗 (𝑦𝑗), …, 𝑝𝑌𝑘 (𝑦𝑘)

𝑝𝑌𝑘+1 (𝑦𝑘+1), …, 𝑝𝑌𝑙 (𝑦𝑙), …, 𝑝𝑌𝑛 (𝑦𝑛)

𝜋𝑌𝑘+1 (𝑦𝑘+1), …, 𝜋𝑌𝑙 (𝑦𝑙), …, 𝜋𝑌𝑛 (𝑦𝑛)

Figure 4.2 – Scheme of the uncertainty modeling framework

4.3.1 Purely probabilistic approach

In the purely probabilistic approach, all the input variables are considered probabilistic and
their uncertainty is represented by probability distributions. The purely probabilistic approach
is based on the Monte Carlo sampling of possible values of all the input variables from the
corresponding probability distributions and the subsequent computation of the model output
which correspond to the input values sampled [Kalos and Whitlock 1986]. This procedure is
repeated a large number of times to collect different values of the model output in corre-
spondence of different values of the input variables. These random realizations can be used
to calculate quantities of interest, e.g., the empirical cumulative distribution function of the
model output.

4.3.2 Monte Carlo simulation and fuzzy interval analysis approach

In the Monte Carlo simulation and fuzzy interval analysis approach (hereafter also called
hybrid approach), the epistemic uncertainty is represented in possibilistic terms. Therefore, the
joint propagation of the aleatory and epistemic uncertainty can be performed by combining
the Monte Carlo technique [Kalos and Whitlock 1986] with the extension principle of fuzzy set
theory [Zadeh 1965] by means of the following two main steps [Baudrit et al. 2006]:

1. repeated Monte Carlo sampling of the random variables to process aleatory uncertainty;

2. fuzzy interval analysis to process epistemic uncertainty.

For the generic ith k-tuple of values sampled by Monte Carlo, i = 1…m, an estimate of
Z = f (Y1,Y2,…,Yn) is obtained in terms of a fuzzy subset π f

i . As a result of the m repeated
samplings of the random variables, Z = f (Y1, Y2,…, Yn) turns out to be represented as a fuzzy
random variable (or random possibility distribution) in the sense of [Gil 2001].
The operative steps of the procedure are (see figure 4.3 to figure 4.5):

1. set i = 0;

2. set i = i + 1;

3. sample the ith realization (y i1,…, y ik) of the random variable vector (Y1,…, Yk);

4. set α = 0;

5. select the α-cuts Ak+1
α ,Ak+2

α ,…,An
α of the possibility distributions (πYk+1 ,…, πYn) as inter-

vals of possible values of the possibilistic variables (Yk+1…Yn); by way of example, the
α-cut Ak+1

0 of level α = 0 and the α-cut Ak+1
0.7 of level α = 0.7 are shown in figure 4.3 and

figure 4.4, respectively, with reference to the possibility distribution πYk+1 of the uncertain
variable Yk+1;
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6. calculate the smallest and largest values of f (y i1,…, y ik ,Yk+1,…,Yn), denoted by f i
α

and f
i
α respectively, considering the fixed values (y i1,…, y ik) sampled for the ran-

dom variables (Y1…Yk) and all values of the possibilistic variables (Yk+1…Yn) in
the α-cuts Ak+1

α ,Ak+2
α …An

α of their possibility distributions (πYk+1…πYn), i.e., f i
α

=

min
Yk+1∈Ak+1

α …Yn∈An
α

f (y i1,…, y ik , Yk+1,…, Yn) and f
i
α = max

Yk+1∈Ak+1
α …Yn∈An

α

f (y i1,…, y ik , Yk+1,…, Yn);

7. take the extreme values f i
α
and f

i
α found in step 6. as the lower and upper limit of the

α-cut of f (y i1,…, y ik ,Yk+1,…,Yn); by way of example, the α-cut Af
0 of level α = 0 and

the α-cut Af
0.7 of level α = 0.7 are shown in figure 4.3 and figure 4.4, respectively, with

reference to the possibility distribution π f
i of Z = f (Y );

8. if α ≠ 1 then set α = α + Δα (e.g., Δα = 0.05) and return to step 5. above; otherwise, obtain
the fuzzy random realization (fuzzy interval) π f

i of Z = f (Y ) as the collection of the
values f i

α
and f

i
α for each α-cut; an example of fuzzy random realization (fuzzy interval)

π f
i (z) of Z = f (Y ) is pictorially shown in figure 4.5;

9. if i ≠ m then go back to step 2. above, else stop the algorithm.

𝑖 ← 0

𝑖 ← 𝑖 + 1

Sample a realization (𝑦𝑖
1, …, 𝑦𝑖

𝑘) of the
aleatory variables from their distributions
𝑝𝑌1 (𝑦1), …, 𝑝𝑌𝑘 (𝑦)

α ← 0

Find the α-cuts 𝐴𝑌𝑘+1𝛼 , …, 𝐴𝑌𝑘𝛼 of
𝜋(𝑌𝑘+1), …, 𝜋(𝑌𝑛)

Compute 𝑓𝑖
�̱� and ̅𝑓𝑖

𝛼 as the min and max
values of 𝑓(𝑦𝑖

1, …, 𝑦𝑖
𝑘, 𝑌𝑘+1, …, 𝑌𝑛) with

(𝑌𝑘+1, …, 𝑌𝑛) ∈ (𝐴𝑌𝑘+1𝛼 , …, 𝐴𝑌𝑛𝛼 )

α = 1?α ← α + Δα

Define the possibilistic random distribution 𝜋𝑓
𝑖

by all α-cuts 𝑓𝑖
�̱� and ̅𝑓𝑖

𝛼, α=0, Δα, …, 1-Δα, 1,
𝑖=1…𝑚

𝑖 = 𝑚?

Exit

no

yes

yes

no

Inner loop

possibilistic variables

Outer loop

probabilistic variables

Figure 4.3 – Scheme of the operative steps of the hybrid method: in evidence the selection of the α-cut Ak+1
0

of level α = 0 of the possibility distribution πY k+1
of variable Y k+1 and the computation of the

α-cut Af
0 of level α = 0 of the possibility distribution π f

i of Z = f (Y )

The procedure is repeated for i = 1…m: at the end of the procedure an ensemble of realizations
of fuzzy intervals is obtained for the output function Z = f (Y ), i.e., (π f

1 …π f
m) (figure 4.6 on

the left).
For each set A contained in the universe of discourse UZ of the output variable Z , it is
possible to obtain the possibility measure Πf

i (A) and the necessity measure N f
i (A) from the

corresponding possibility distribution π f
i (z), by:
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𝑖 ← 0
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𝜋(𝑌𝑘+1), …, 𝜋(𝑌𝑛)
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α = 1?α ← α + Δα

Define the possibilistic random distribution 𝜋𝑓
𝑖

by all α-cuts 𝑓𝑖
�̱� and ̅𝑓𝑖
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𝑖=1…𝑚
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Figure 4.4 – Scheme of the operative steps of the hybrid method: in evidence the selection of the α-cut Ak+1
0.7

of level α = 0.7 of the possibility distribution πY k+1
of variable Y k+1 and the computation of

the α-cut Af
0.7 of level α = 0.7 of the possibility distribution π f

i of Z = f (Y )

Πf
i (A) = max

z∈A
{π f

i (z)} (4.3)

N f
i (A) = inf

z∉A
{1 − π f

i (z)} = 1 − Πf
i (A) ∀A ⊆ UZ (4.4)

The m different realizations of possibility and necessity can then be combined to obtain the
belief Bel(A) and the plausibility Pl(A) for any set A, respectively [Baudrit et al. 2006]:

Bel(A) =
m

∑
i=1

piN
f
i (A) (4.5)

Pl(A) =
m

∑
i=1

piΠ
f
i (A) (4.6)

where pi is the probability of sampling the ith realization (y i1,…, y ik) of the random variable
vector (Y1…Yk); in the present case of m realizations pi = 1/m.
In this view, the likelihood of the value f (Y ) passing a given threshold z can then be com-
puted by considering the belief and the plausibility of the set A = (−∞, z]; in this respect,
Bel (f (Y ) ∈ (−∞, z]) and Pl (f (Y ) ∈ (−∞, z]) can be interpreted as bounding, average cumu-
lative distributions F(z) = Bel (f (Y ) ∈ (−∞, z]) , F(z) = Pl (f (Y ) ∈ (−∞, z]) [Baudrit et al.
2006].
Let the core and the support of a possibilistic distribution π f (z) be the crisp sets of all points
of UZ such that π f (z) is equal to 1 and nonzero, respectively. Considering a generic value
z of f (Y ), it is Pl (f (Y ) ∈ (−∞, z]) = 1 if and only if Πf

i (f (Y ) ∈ (−∞, z]) = 1,∀i = 1…m,
that is, for z > z∗ = maxi {inf(core(π f

i ))}. Similarly, Pl (f (Y ) ∈ (−∞, z]) = 0 if and only if

Πf
i (f (Y ) ∈ (−∞, z]) = 0 ∀i = 1…m, that is, for z ≤ z∗ = mini {inf(support(π f

i ))}.
Finally, one way to estimate the total uncertainty on f (Y ) is to provide a confi-
dence interval at a given level of confidence, taking the lower and upper bounds
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Figure 4.5 – Scheme of the operative steps of the hybrid method: in evidence an example of fuzzy random
realization π f

i of f (Y )
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from Pl (f (Y ) ∈ (−∞, z]) and Bel (f (Y ) ∈ (−∞, z]), respectively [Baudrit et al. 2006].
On the other hand, Bel (f (Y ) ∈ (−∞, z]) and Pl (f (Y ) ∈ (−∞, z]) cannot convey any
information on the prediction that f (Y ) lies within a given interval [z1, z2], since
neither Bel (f (Y ) ∈ [z1, z2]) nor Pl (f (Y ) ∈ [z1, z2]) can be expressed in terms of
Bel (f (Y ) ∈ (−∞, z]) and Pl (f (Y ) ∈ (−∞, z]), respectively. A visual representation of this
procedure is given in figure 4.6.
To prove equations (4.5) and (4.6), let us consider for simplicity a function Z = f (Y1, Y2) of two
variables Y1, a discrete random variable with probability distribution {pY1i }, i = 1…m, and Y2, a
possibilistic variable with possibility distribution πY2 . Focal elements1 for Y1 are singletons
{y i1; i = 1…m} and the corresponding mass distribution is equal to {pY1i ; i = 1…m} because Y1
is discrete. Focal elements for Y2 corresponding to α-cuts are denoted AY2

αj , j = 1…q where q is
the index of the α-cuts. The mass distribution associated to the focal elements (i.e., the α-cuts,
AY2
αj ), is denoted νY2j = αj − αj+1, j = 1…q [Baudrit et al. 2006].

Under the hybrid method, Z = f (Y1,Y2), is a discrete random fuzzy subset: that is, m fuzzy
random realizations π f

i , i = 1…m, are obtained with probabilities {pY1i ; i = 1…m}. Under the
random set approach [Baudrit and Dubois 2005], this random fuzzy set is interpreted as m × q
focal elements (intervals) with mass distributions pY1i × νY2j , i = 1…m, j = 1…q, and focal
elements Af

ij = f (y i1,Aαj).

The calculation of the plausibility Plf (A) of a generic set A of values of f (Y1,Y2) reads as
follows:

Plf (A) = ∑
(i,j),A∩Af

ij≠0

pY1i × νY2j = ∑
i=1…m

pY1i × ∑
j=1…q

A∩Af
ij≠0

νY2j = ∑
i=1…m

pY1i × Plfi (A)

Since we have Af
ij ⊆ … ⊆ Af

ih ∀j ≥ h, then Plfi (A) = Πf
i (A) and Plf (A) = ∑

i=1…m
pY1i × Πf

i (A).
These results still hold when several independent probabilistic variables are involved, whereas
they do not directly apply with more than one possibilistic variable. Indeed, recall that fuzzy
arithmetic presupposes total dependence between α-cuts.
Consider now two discrete probabilistic variables, Y1,Y2, encoded by their focal el-
ements (singletons) {y i1; i = 1…m}, {y j2; j = 1…m} and the mass distributions
{pY1i ; i = 1…m} , {pY2j ; j = 1…m} and two possibilistic variables, Y3, Y4, encoded as belief func-
tions, by their focal elements AY3

αk , k = 1…q,AY4
αl , l = 1…q, and the mass distributions

νY3k = αk−αk+1, k = 1…q, νY4l = αl −αl+1, l = 1…q. If independence between focal sets is assumed,
the joint mass distribution, νijkl, associated to focal elements Af

ijkl = f ({y i1}, {y
j
2}, π

Y3
αk , π

Y4
αl ) of

f (Y1, Y2, Y3, Y4), is defined by νijkl = pY1i × pY2j × νY3k × νY4l ∀i, j, k, l . It corresponds to applying
a Monte Carlo method to all variables: in particular, for each possibility distribution, an
α-cut (here AY3

αk and AY4
αl ) is independently selected, thus assuming independence of the focal

elements pertaining to different variables. On the contrary, in the case of total dependence
between the focal elements of the possibilistic variables, i.e., when the same value α is selected
for all possibilistic variables (like in the hybrid method adopted in the present work), the joint
possibility distribution πY3,Y4 is characterized by min(πY3 , πY4) which corresponds to nested
Cartesian products of α-cuts. Letting νY3,Y4k = νY3k = νY4k be the mass associated to the Cartesian
product AY3

αk × AY4
αk , we obtain:

∀i, j, k, l, k = l: νijkk = pY1i × pY2j × νY3,Y4k (4.7)
∀i, j, k, l, k ≠ l: νijkl = 0 (4.8)

Hence, the estimate of the plausibility, for all measurable sets A, is defined as:

Plf (A) = ∑
A∩Af

ijkk≠0

pY1i × pY2j × νY3,Y4k = ∑
i=1…m
j=1…m

pY1i × pY2j × ∑
k=1…q

A∩Af
ijkk≠0

νY3,Y4k = ∑
i=1…m
j=1…m

pY1i × pY2j × Plfij(A)

1 U ⊆ W is called a focal element of the belief function Bel if and only if m(U ) > 0, where m is the mass function of
Bel.
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Since we have Af
ijkk ⊆ … ⊆ Af

ijhh∀k ≥ h, then Plfij(A) = Πf
ij(A) and Plf (A) = ∑i=1…m,j=1…m pY1i ×

pY2j × Πf
ij(A) where Πf

ij(A) are the possibility measures associated to the output possibility
distributions π f

ij obtained by the hybrid method.

Fuzzy random realization 1 

… … 

Fuzzy random realization m

)(1 zfπ

)(zf
mπ

](( )zYfP ,)( ∞−∈

](( )zYfP ,)( ∞−∈

](( )zYfP ,)( ∞−∈

Figure 4.6 – Left: fuzzy random realizations (π f
1 ,…, π f

m) of Z = f (Y ); middle: realizations of possibility
and necessity measures, Πf

i (f (Y ) ∈ (−∞, z]) and N f
i (f (Y ) ∈ (−∞, z]) associated to π f

i , i =
1…m; right: belief and plausibility functions Bel (f (Y ) ∈ (−∞, z]) and Pl (f (Y ) ∈ (−∞, z])
obtained using equations (4.5) and (4.6).

4.4 Application

The case study deals with the design of a protection dike in a residential area that is closely
located to a river with potential risk of floods. As a mitigation and prevention measure, a dike
has to be built to protect the area. Two issues of concern are: i) high construction and annual
maintenance costs of the dike; ii) uncertainty in the natural phenomenon of flooding. Then,
the different design options must be evaluated within a flooding risk analysis framework
accounting for uncertainty [Limbourg and de Rocquigny 2010].
In this section, the purely probabilistic approach (§ 4.3.1) and the Monte Carlo simulation
and fuzzy interval analysis approach (§ 4.3.2) are applied to the case study. In particular, in
§ 4.4.1, the description of the model is given; in § 4.4.2, the model input variables and the
representation of the associated uncertainties are illustrated; in § 4.4.3, the results of the
uncertainty propagation are reported.
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Figure 4.7 – Gumbel probability distribution function for the maximal water flow Q [m3/s]

4.4.1 The model

The maximal water level of the river (i.e., the output variable of the model, Zc) is given as
a function of several parameters (i.e., the input variables of the model), some of which are
uncertain [Limbourg and de Rocquigny 2010]:

Zc = Zv + ⎛⎜
⎝

Q

Ks × B × √(Zm − Zv)/L
⎞⎟
⎠

3/5

(4.9)

where:

� Q is the yearly maximal water discharge (m3/s);

� Zm and ZmZv are the riverbed levels (m asl) at the upstream and downstream part of the
river under investigation, respectively;

� Ks is the Strickler friction coefficient;

� B and L are the width and length of the river part (m), respectively.

The input variables are classified as follows:

� Constants: B = 300m, L = 5000m.

� Uncertain variables: Q, Zm, ZmZv , Ks .

4.4.2 The input variables: physical description and representation of the associated
uncertainty

A physical description of the input variables and the associated uncertainty representation is
given in the following.
The maximal water flow Q is the variable with the largest amount of data available. A large
set of water flow data for the river given is available to perform Bayesian inference (149
annual maximal flow values) on the parameters of the distribution. The Gumbel distribution
Gum(q|α , β) is a well-established probabilistic model for maximal flows:

Gum(q|α , β) =
1
β
exp ⎡⎢

⎣
−exp(

q − α
β

)⎤⎥
⎦
exp ⎡⎢

⎣

α − q
β

⎤⎥
⎦

(4.10)

The Bayesian posterior estimates of the parameters of the distribution are α = 1014.0 and β =
565.4 [Pasanisi et al. 2009]; the corresponding probability density function is shown in figure 4.7.
The uncertainties in the upstream and downstream levels, Zm and ZmZv respectively, are
quantified by a bivariate normal distributionN (μ, σ). Indeed, as the upstream and downstream
sections are quite close it seems reasonable to model them as possibly dependent variables. A
total of 29 pairs of data (Z (i)

m ,Z (i)
v ) have been used to perform Bayesian inference and setting

the posterior distribution for μ and σ. The point values μ∗ and σ ∗ used in this chapter for the
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distribution parameters μ and σ are μ∗ = [μ∗m, μ∗v] = [55.0, 50.2] and σ ∗ = [σ ∗
m, σ ∗

mv, σ ∗
vm, σ ∗

v] =
[0.46, 0.3388; 0.3388, 0.39]: these are the mean values of the Bayesian posterior probability
density functions of the parameters μ and σ of the probabilistic distributions of the uncertain
variables Zm and ZmZv [Pasanisi et al. 2009]. The resulting probability density functions are
shown in figure 4.8.
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Figure 4.8 – Normal probability distribution functions of the levels upstream Zm (solid lines) and down-
stream Zv (dashed lines)

The Strickler friction coefficient Ks , an empirical coefficient which represents the surface
roughness and sinuosity, is perhaps the most critical source of uncertainty. It is affected by
epistemic uncertainty, since it is a simplification of a much more complex hydraulic model. In
addition, assessing the uncertainty of Ks is difficult because, in practice, even if this coefficient
is strongly related to the morphology of the river, it cannot be measured. As a consequence,
data may only be retrieved through indirect calibration noised by significant observational
uncertainty: this is reflected in only a very small series available of 5 data sets with ± 15%
noise [Limbourg and de Rocquigny 2010]. The absolute physical limits of Ks are [a, b] = [5, 60],
but the real value is expected to vary in a smaller range.
In [Pasanisi et al. 2009], this epistemic variable is treated within a probabilistic framework: it is
considered that the probability distribution of Ks is normal with mean μ and standard deviation
σ equal to 30 and 7.5, respectively. In this work, the epistemic uncertainty associated to Ks is
represented by means of possibility distributions; the four methods described in the previous
section are used to this aim. Note that for the method of § 4.2.1 (i.e., triangular possibility
distribution), the basis of the triangle is [5, 60] (i.e., the absolute physical limits of Ks) and the
most likely value is 30 (i.e., the mean μ of the normal probability density function of Ks used
in [Pasanisi et al. 2009]); for the methods of § 4.2.1 and § 4.2.1 (i.e., Chebyshev inequality and
probability-possibility transformations) the mean μ and the standard deviation σ used are 30
and 7.5 (this corresponds to the mean and the standard deviation of the probability density
function of Ks used in [Pasanisi et al. 2009]).
The possibility distributions for Ks resulting from the application of the methods in § 4.2.1 are
shown in figure 4.9. It is worth noting that the area lying under the possibility distribution is
related to the imprecision in the knowledge of the possibilistic variable: the larger the area,
the higher the imprecision.
It can be noticed that the larger areas are those underlying the possibility distributions built
using the triangular function and the Chebyshev inequality. In fact, the information available
to the analyst for building these two possibility distributions is quite scarce: in the first case,
only the physical limits and the most likely value of the variable are known; in the second case,
only the mean value and the standard deviation are considered. On the contrary, the smaller
areas underlying the possibility distributions constructed by the transformation methods
are explained by the larger amount of information available to the analyst concerning the
epistemic variable of interest, i.e., the probability distribution function itself [Baraldi et al. 2012].

38



4.4. Application

-10 0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ks

π(
K

s)

Triangular distribution

Chebyshev inequality

Maximum specificity

Normalization

Ks

π(Ks)

Figure 4.9 – Comparison of the four different possibility distributions used for Ks : triangular function,
Chebyshev inequality, principle of maximum specificity, normalization of the probability
density [Baraldi et al. 2012].

For each of the four cases considered (i.e., for each of the possibility distributions built), the
hybrid approach of § 4.3.2 is run with m = 10 000 realizations of the probabilistic variables; for
each realization of the probabilistic variables, 21 values of α (0, 0.05, 0.1, …, 1) are considered to
process the epistemic uncertainty associated with Ks . The results of the hybrid approach are
compared to those obtained with a pure probabilistic approach with n = 10 000 samplings of
the probabilistic variables: in this case, the probability distribution of Ks is considered normal
with mean μ and standard deviation σ equal to 30 and 7.5, respectively, as in the reference
paper [Pasanisi et al. 2009].

To illustrate the procedure proposed in § 4.3.2, the uncertainty propagation in the computation

of the maximal water level of the river Zc = Zv+( Q

Ks×300×√(Zm−Zv)/5000
)
3/5

,Zc = f (Q,Zm,Zv ,Ks),
is illustrated step by step [Baraldi et al. 2012]:

1. A number m = 10 000 of realizations of the probabilistic variables (Qi ,Z i
m,Z i

v ) has been
sampled from the corresponding probability density functions proposed in [Pasanisi et al.
2009] and shown in figure 4.7 and figure 4.8. Then, for each realization, steps 2. – 5.
below have been performed.

2. With respect to the scarce information about the epistemic variable Ks , 21 values of
α (0, 0.05, 0.1, …, 1) have been considered. The α-cuts [Kα

s ,K
α
s ] of the corresponding

possibilistic distribution π(Ks) have been found. For each α-cut, steps 3. – 5. below have
been performed.

3. For the ith realization of the probabilistic variables, Qi ,Z i
m,Z i

v , and the α-cut of the
possibilistic variable, Ks , the smallest f i

α
and largest f

i
α values of f have been computed

considering the fixed values Qi ,Z i
m,Z i

v and all values of Ks in its α-cut interval [Kα
s ,K

α
s ].

In this particular case, given the structure of f , f i
α
= Z i

v + ( Qi

K
α
s ×300×√(Z i

m−Z i
v)/5000

)
3/5

and

f
i
α = Z i

v + ( Qi

Kα
s ×300×√(Z i

m−Z i
v)/5000

)
3/5

.

4. The extreme values f i
α
and largest f

i
α found in 3. have been taken as the lower and upper

limit of the α-cut of f for the ith realization.
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Figure 4.10 – Top: two different fuzzy random realizations of the maximal water level of the river. Bottom:
corresponding necessity and possibility measures.

5. After having repeated steps 3. and 4. for all the 21 α-cuts found in step 2., the fuzzy
random realization of f is constructed as the collection of its 21 α-cut intervals [f i

α
, f

i
α
].

6. Steps 2. – 5. have been repeated for each of the m = 10 000 realizations Qi ,Z i
m,Z i

v , i =
1…10 000, producing m fuzzy random realizations of π f

i . Figure 4.10 (top) shows two
different examples of fuzzy random realizations of the maximal water level of the river
Zc .

Then, for all setsA = [0, zc), zc ∈ R+ the possibility and the necessity measures,Πf
i ([0, zc)) and

N f
i ([0, zc)), are obtained from the corresponding possibility distributions π f

i (zc), according to
(4.3) and (4.4), respectively. Figure 4.10 (bottom) reports the possibility and necessity measures
corresponding to the possibility distributions shown in figure 4.10 (top).
Finally, the m = 10 000 possibility and necessity measures are combined to obtain the belief

and plausibility measures by (4.5) and (4.6): Bel ([0, zc)) =
m
∑
i=1

1
m
N f
i ([0, zc)) and Pl ([0, zc)) =

m
∑
i=1

1
m
Πf
i ([0, zc)). These results are reported in § 4.4.3.

4.4.3 Results of the uncertainty propagation

In this section, the results of the uncertainty propagation are reported. The Monte Carlo
simulation and fuzzy interval analysis and the pure probabilistic approaches are compared,
then a sensitivity analysis of the results of the fuzzy interval analysis propagation is presented.
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Comparison between the Monte Carlo simulation and fuzzy interval analysis approach with
the pure probabilistic approach

Figures 4.11 to 4.14 show the comparison of the cumulative distribution functions of the
maximal water level of the river (i.e., the output variable of the model, Zc) obtained by the
probabilistic uncertainty propagation approach (solid lines) with the belief (lower curves) and
plausibility (upper curves) functions obtained by the hybrid approach, where the possibility
distributions for Ks are constructed using the methods of § 4.2.1.
It can be seen that [Baraldi et al. 2012]:

� Thehybrid approach explicitly propagates the uncertainty by separating the contributions
coming from the probabilistic and possibilistic variables; this separation is visible in the
output distributions of the maximal water level of the river where the separation between
the belief and plausibility functions reflects the imprecision in the knowledge of the
possibilistic variable Ks .

� The separation between the belief and plausibility functions is larger for the cases in
figure 4.11 and figure 4.12 (where the possibility distributions are those of built using
the triangular function and Chebyschev inequality, respectively) with respect to those in
figure 4.13 and figure 4.14 (where the possibility distributions are those built using the
probability-possibility transformations); the larger gap between the belief and plausibility
functions in figure 4.11 and figure 4.12 than in figure 4.13 and figure 4.14 is explained by
the larger area contained under the corresponding possibility distribution functions (actu-
ally, the larger the area, the higher the imprecision in the knowledge of the possibilistic
variable).

� The uncertainty in the output distribution of the pure probabilistic approach is given
only by the slope of the cumulative distribution.

� As expected, the cumulative distribution of the maximal water level of the river obtained
by the pure probabilistic method is within the belief and plausibility functions obtained
by the hybrid approach.
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Figure 4.11 – Comparison of the cumulative distribution functions of the maximal water level of the river
Zc obtained by the probabilistic uncertainty propagation approach (solid line) with the belief
(lower dashed curve) and plausibility (upper dashed curve) functions obtained by the hybrid
approach with the possibility distribution of Ks taken as a triangular function (see § 4.2.1
and figure 4.9) [Baraldi et al. 2012]

The final goal of the uncertainty study is to determine i) the dike level necessary to guarantee
a given flood return period or ii) the flood risk for a given dike level.
With respect to issue i) above, the quantity of interest that is mostly relevant to the decision-
maker is the 99% quantile of Zc , i.e., Z 0.99

c , taken as the annual maximal flood level. This
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Figure 4.12 – Comparison of the cumulative distribution functions of the maximal water level of the river
Zc obtained by the probabilistic uncertainty propagation approach (solid line) with the belief
(lower dashed curve) and plausibility (upper dashed curve) functions obtained by the hybrid
approach with the possibility distribution of Ks built using the Chebyshev inequality (see
§ 4.2.1 and figure 4.9) [Baraldi et al. 2012]

40 45 50 55 60 65 70 75 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Zc

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n

Pl
Bel
Prob cdf

Figure 4.13 – Comparison of the cumulative distribution functions of the maximal water level of the river
Zc obtained by the probabilistic uncertainty propagation approach (solid line) with the belief
(lower dashed curve) and plausibility (upper dashed curve) functions obtained by the hybrid
approach with the possibility distribution of Ks built on the transformation from probability
to possibility distribution using the principle of maximum specificity (see § 4.2.1 and
figure 4.9) [Baraldi et al. 2012]
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Figure 4.14 – Comparison of the cumulative distribution functions of the maximal water level of the river
Zc obtained by the probabilistic uncertainty propagation approach (solid line) with the belief
(lower dashed curve) and plausibility (upper dashed curve) functions obtained by the hybrid
approach with the possibility distribution of Ks built on the transformation from probability
to possibility distribution using the normalization of probability density (see § 4.2.1 and
figure 4.9) [Baraldi et al. 2012]

corresponds to the level of a “centennial” flood, the yearly maximal water level with a 100
year return period. With respect to issue ii) above, the quantity of interest that is mostly
relevant to the decision-maker is the probability that the maximal water level of the river
Zc exceeds a given threshold z∗, i.e., P(Zc > z∗); in the present document, z∗ = 55.5m as in
[Limbourg and de Rocquigny 2010]. Table 4.1 reports the lower (Z 0.99

c,lower) and upper (Z 0.99
c,upper) 99th

percentiles obtained from the two limiting cumulative distributions by using the four different
possibility distributions proposed in § 4.2.1 (i.e., triangular function, Chebyshev inequality,
principle of maximum specificity and normalization of the probability density function) and
the corresponding Bel(Zc > z∗) and Pl(Zc > z∗). In addition, as synthetic mathematical
indicators of the imprecision in the knowledge of Zc (i.e., of the separation between the belief
and plausibility functions), the percentage widths:

� WZc =
Z 0.99
c,upper−Z 0.99

c,lower

Z 0.99
c,prob

of the interval [Z 0.99
c,lower,Z

0.99
c,upper] with respect to the percentile Z 0.99

c,prob

obtained by the pure probabilistic approach

� W ∗ = Pl(Zc>z∗)−Bel(Zc>z∗)
P(Zc>z∗)prob

of the interval [Bel(Zc > z∗), Pl(Zc > z∗)].

have been reported.
The numerical results in table 4.1 confirm the similarities between the cumulative distributions
obtained by using the triangular function and the Chebyshev inequality for the possibilistic
representation of the uncertainty on Ks , and between the cumulative distributions obtained
by the two different transformations from probability to possibility distributions [Baraldi et al.
2012].
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Possibility distribution Z 0.99
c (pure probabilistic value =

56.10) P[Zc ≥ 55.5] (pure probabilistic value = 0.0191)

[Z 0.99
c,lower,Z 0.99

c,upper] WZc [%] [Bel, Pl] W ∗ [%]

Triangular function [54.57, 59.29] 8 [0.0015, 0.1682] 873

Chebyshev inequality [54.40, 60.00] 10 [0.0014, 0.1631] 847

Transformation probability to
possibility (principle of
maximum specificity)

[54.60, 56.69] 4 [0.0028, 0.0705] 355

Transformation probability to
possibility (normalization) [54.83, 55.99] 2 [0.0043, 0.0344] 157

Table 4.1 – Lower and upper values of the Zc percentiles and the threshold exceedance probability, and
calculation of the indicator W about the width of the confidence interval [Baraldi et al. 2012]

Sensitivity analysis with respect to the fuzzy interval analysis propagation

We have also analyzed the sensitivity of the output limiting cumulative functions to a different
choice of the number of α-cuts considered for processing the epistemic uncertainty of the
Strickler coefficient, Ks . The analysis was carried out considering the possibility distribution
of Ks obtained by using the Chebyshev inequality. Three cases are taken into account: 5, 20,
100 α-cuts. The results of the analysis, reported in figure 4.15, show that in this case study a
good trade-off between precision of the results and computation time2 is achieved by using
20 α-cuts for the propagation of the uncertainty described by the possibility distributions.
Reducing the number of α-cuts leads to imprecise estimation of the quantities of interest,
whereas an higher number of α-cuts causes a significant increase of the computational time.

4.5 Conclusions

In this report, an ‘hybrid’ computational framework has been presented, which allows the
joint propagation of probabilistic and possibilistic uncertainty representations. An application
to a flood risk model has been illustrated as a realistic benchmark for uncertainty modeling.
Aleatory and epistemic uncertainties have been kept separate in the model, i.e., some of the
variables are purely probabilistic (aleatory uncertainty) and some are purely possibilistic
(epistemic uncertainty).
The following analyses have been carried out:

1. A comparison has been performed between the ‘hybrid’ and the ‘pure probabilistic’
approach, highlighting that:

� The uncertainty in the output distribution of the pure probabilistic approach is given
only by the slope of the cumulative distribution.

� The hybrid approach explicitly propagates the uncertainty by separating the contri-
butions coming from the probabilistic and possibilistic variables.

� The larger gap between the belief and plausibility functions is explained by the
larger area contained under the corresponding possibility distribution functions.

� As expected, the cumulative distribution of the model output obtained by the pure
probabilistic method is within the belief and plausibility functions obtained by the
hybrid approach.

2. Four methods for constructing the possibility distributions of the variables subject to
epistemic uncertainty have been compared, showing that:

� The choice of the possibility distribution depends on the information available about
the variable: when the physical limits and the most likely value are available, a
triangular possibility distribution can be constructed; when the mean and the stan-
dard deviation can be computed, for instance using empirical data, the Chebyshev

2 All reported computation times are on a Pentium 4 CPU operating at 3GHz.
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Figure 4.15 – On the left: comparison of the cumulative distribution functions of the maximal water level
of the river Zc obtained by the probabilistic uncertainty propagation approach (solid line)
with the belief (lower dashed curve) and plausibility (upper dashed curve) functions obtained
by the hybrid approach with a different number of α-cuts. On the right: computation time,
lower and upper values of Zc percentiles, threshold exceedance probability and the respective
percentage width W of the intervals.
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inequality can be used; when a probability distribution is available, the methods for
transforming probability into possibility distributions can be employed.

� There are similarities between the results obtained by using:
(a) the triangular function and the Chebyshev inequality;

(b) the two transformations from probability to possibility distributions (i.e., those
based on the principle of maximum specificity and on the normalization of the
probability density function).

These similarities are explained by the same ‘uncertainty content’ borne by the corre-
sponding possibility distributions (as demonstrated by the similar area limited by the
possibility distribution functions).

3. An analysis of the sensitivity of the results to the number of α-cuts has been carried out,
showing that:

� a decrease in the number of α-cuts leads to imprecise estimates of the belief and
plausibility functions of the output;

� on the other hand, increasing the number of α-cuts causes a remarkable increase in
the computational time.

Thus, the choice of the number of α-cuts is driven by the trade-off between estimation
accuracy and computational cost.
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5

Conclusions

In this document, two procedures have been presented for ranking system components in order
of importancewhen in presence of epistemic uncertainties affecting the components’ reliability
and availability parameters. One procedure allows accounting for epistemic uncertainties
described by probability distributions (§ 1.3.2) [Baraldi et al. 2009b]; the other one allows
handling epistemic uncertainties described by possibility distributions (§ 1.4) [Baraldi et al.
2009a]. In both methods, the ranking procedure is based on a pairwise comparison criterion
that permits to establish a relation order between the uncertain importance measures (IMs) of
two components.
Generally speaking, the main pitfall of the ranking approaches based on pairwise comparisons
lies in the combinatorial explosion of the number of pairs of elements to be compared, when
the systems are made up of a large number of components. TheQuicksort algorithm has been
used to partially overcome this drawback, since it allows sorting a large set of components on
the basis of their importance, with a relatively small number of comparisons.
The application of the procedures to two case studies has shown that [Baraldi et al. 2009b,a]:

� Accounting for uncertainties in the computation of IMs is relevant: the ranking of the
components’ importances obtained neglecting the uncertainties can be different from
that obtained by considering them.

� Compared to other approaches proposed in the literature [Modarres 2006], the procedures
presented in this document seem to overcome some limitations by a more satisfactory
definition of the exceedance measures and a greater robustness of the final rank with
respect to the choice of the pivot element in the sorting algorithm.

� The final ranking may depend on the investigation framework used to carry out the
analysis, which is mainly established on the basis of the quality and quantity of available
data. In general, the probabilistic representation and propagation of the uncertainty
allows a more refined final ranking to be obtained, but it calls for a larger amount of
available data and more accurate information (which may be lacking in real industrial
applications).

� The final ranking may also depend on the choice of the pivot and on the initial arrange-
ment of the components. In this respect, the execution of the sorting algorithm for
different settings of these two parameters, would give more confidence on the final
result.

A final remark is in order with respect to the cases where the epistemic uncertainties are
represented by possibility distributions. The proposed procedures have been applied in both
case studies to rank the components on the basis of their Birnbaum IM (§ 2.2 and § 3.2); this
has led to a computational simplification. In fact, the simple rules of the fuzzy addition,
subtraction and multiplication suffice to propagate the uncertainty from the basic events to
the Birnbaum IMs of the components, and make very simple the search for their maxima and
minima when the probabilities of the basic events range in a given α-cut (equations (1.9) and
(1.10)) at step 1.2 of the procedure of § 1.4). The computation of other IMs (e.g., the RRW, RAW,
FV) makes it necessary to introduce also the division operation, which renders the search
more difficult. Obviously, the larger the number of basic events, the larger the dimension of
the space in which the maxima and minima must be searched for, and the larger the required
computational effort. In case of complex systems, the application of optimization techniques
such as Genetic Algorithms may be beneficial to reduce computation times. This is an open
issue, which will be investigated in future work.
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A

PDFs and CDFs of the difference between
two uniform random variables

Given a generic uniform random variable x ≈ U (a, b), its moment generating function (mgf)
is given by:

ϕ(s) =
esb − esa

s(b − a)

The random variable r = IA − IB is the convolution of two uniformly distributed random
variables and in particular:

IA ≈ U (aIA , bIA)

−IB ≈ U (−bIB , −aIB)

The mgf of r is given by:

ϕr(s) =
esbIA − esaIA

s(bIA − aIA
) ·

es(−aIB) − es(−bIB)
s(bIB − aIB)

ϕr(s) =
es(bIA−aIB) − es(aIA−aIB) − es(bIA−bIB) + es(aIA)−bIB)

s2(bIA − aIA) ⋅ (bIB − aIB)

As for the inverse transformation, it could be noted that the mgf of r can be regarded as the
algebraic sum of functions which are linearly increasing/decreasing with the same slope. So
the pdf and cdf of r are given by:

fr(r) =

⎧{{{{{{
⎨{{{{{{⎩

r+bIB−aIA
(bIA−aIA)·(bIB−aIB)

aIA − bIB ≤ r ≤ bIA − bIB

1
(bIB−aIB)

bIA − bIB ≤ r ≤ aIA − aIB

bIA−aIB−r

(bIA−aIA)·(bIB−aIB)
aIA − aIB ≤ r ≤ bIA − aIB

Fr(r) =

⎧{{{{{{{
⎨{{{{{{{⎩

(bIB−aIA+r)2

2(bIA−aIA)·(bIB−aIB)
aIA − bIB ≤ r ≤ bIA − bIB

1 −
(aIA+bIA−2aIB−2r)

2(bIB−aIB)
bIA − bIB ≤ r ≤ aIA − aIB

1 −
(bIA−aIB−r)2

2(bIA−aIA)·(bIB−aIB)
aIA − aIB ≤ r ≤ bIA − aIB
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The Quicksort algorithm

A common method of simplification of a complex problem is to divide the problem into
sub-problems of the same type: this technique in computer programming is called “divide and
conquer”. The quicksort algorithm applies such technique and sorts groups of elements by
dividing their list (ordered array) into two sub-lists. In its simpler version the steps are:

� List the elements in an array ordered according to a given size parameter.

� Pick an element, called a pivot, from the list.

� Reorder the list so that all elements which are smaller than the pivot come before the
pivot and all elements larger than the pivot come after it (equal values can go either way).

� After this partitioning, the pivot is in its final position. This is called the partition
operation.

� Recursively sort the sub-list of smaller elements and the sub-list of larger elements,
following the steps above.

The base case of the recursion (i.e. the stopping condition where the sorting function will not
call itself anymore) are lists of size zero or one. In pseudocode, the algorithm can be described
as follows:
function quicksort(array)
begin

var list less, greater, equal
if length(array) ≤ 1 then

return array
end
pivot := the middle element of array
put pivot into equal
foreach x in array do

if x < pivot then
append x to less

else if x > pivot then
append x to greater

else
append x to equal

end
end
return concatenate(quicksort(less), equal, quicksort(greater))

end

Notice that the elements are examined by comparing them to other elements: this makes
quicksort a comparison sort algorithm. In general, the “equal” list is not defined, being equal
values treated indifferently either as smaller or larger than the pivot. Since for the purpose of
the present work, it is important to identify equalities in rank orders, a specific equal list has
been added in the code.
The disadvantage of the simple version above is that it requires a lot of storage space. There
exists a more sophisticated version which uses an in-place partition algorithm [Knuth 1997],
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which allows achieving the complete sort using a reduced memory space. The pseudocode is:

procedure quicksort(array, left, right)
begin

if right < left then
select a pivot index (e.g. pivotIndex ← left)

end
pivotNewIndex ← partition(array, left, right, pivotIndex)
quicksort(array, left, pivotNewIndex - 1)
quicksort(array, pivotNewIndex + 1, right)

end

function partition(array, left, right, pivotIndex)
begin

pivotValue ← array[pivotIndex]
swap array[pivotIndex] and array[right]
storeIndex ← left
for i from left to right - 1 do

if array[i] ≤ pivotValue then
swap array[i] and array[storeIndex]
storeIndex ← storeIndex + 1

end
swap array[storeIndex] and array[right] // move pivot to its final place

end
return storeIndex

end

The algorithm partitions the portion of the array between indexes left and right, inclusively,
by moving to the beginning of the subarray all elements smaller than or equal to a pivotIndex,
leaving all the larger elements after. In the process, the final position for the pivot element
is also found and temporarily moved to the end of the subarray, so that it does not interfere
to the successive moves. Because only exchanges of positions are applied, the final list has
the same elements as the original list. Notice that an element may be exchanged multiple
times before reaching its final place. This kind of algorithm might be useful when a very large
number of components has to be sorted.
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Sorting algorithm proposed in [Modarres
2006]

This procedure follows the same steps 1 and 2 of the procedure in § 1.3.2, whereas it differs in
the steps 3 and 4, which are as follows:

3. Find the probability that each component i = 1…N occupies a specific position in the
ranking. This is achieved by repeating for υ = 1…M , the following Monte Carlo sampling:
3.1. Sample a realization of the components’ failure rates λυ1 ,…, λυN .

3.2. Find the υ-th importance measures relative to the failure rates of step 3.1.

3.3. Rank the components’ importance measures.

3.4. The probability P(Ri) that component i is in the rank position Ri = 1, 2,…,N is
given by the ratio between the number of simulations with component i resulting
in position Ri and the number of samples M .

4. To rank the component:
4.1. List the components in the rank order found in step 1.

4.2. Choose the most important component as pivot p, i.e. the component with largest
probability of being the most important.

4.3. Compute the measure of exceedance r ∗pj between the components p and j with
j = p + 1, p + 2:

r ∗pj = P(Rp ≥ Rj) =
n

∑
Rp=1

p(Ri)
Rp
∑
Rj=1

p(Rj)

where Rp = rank of p and Rj = rank of j.

4.4. If r ∗pj > Tu , then leave component p in the current position; else, if Tl < r ∗pj < Tu
then put the component j in position Rp ; otherwise, if r ∗pj < Tl swap the rank orders
of components p and j.

4.5. p ← p + 1, repeat steps 4.1–4.3 until p = N .
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